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JOREWORD

- This is Part IV of a ceries of reports on rationales and
" techniques of matrix factoring vwhich play an impbrtlpt role
in multivariste analysis techniques, Indsed, it may well be
said thﬂ} sll adequate models and ods of multivariate
snalysil ave special cases of matyix|factoring techniques.
The more tmditionoi nmethods of factor analysis, in particular,
are special cases of more general matrix factoring techniques,
‘a8 are also all nmultiple regression modeia.
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THE PROBLEN OF ORIGIN
13,1 Kinds of Origin Problems |
In the factor anelysis techniques previously discussed, ve have ixpriu- ,
ly or impliuttly assuned that ve begin vith either a correlation matrix or a
matrix of standardized measures. In the latter case the neans of the columas
are O and their vuimn unity. ' |
© We have indicated in Chapter & that the results of & factor analysis
are dependent on the seleation of both scale and origin for each of the vart-
ables, We have pointed out that for scoe variables, such as height, weight,
time, vclumo,v and mny physiological and other variables, there is a natursl
origin which means that when the value of the variable is 0, none of that
attribute exists for a particular ontﬁ.y. |
We have also indicated that in psychology and many other disciplines we
may have measures in which it is difficult, if not impossible, to specify the
true zero point for the particular attridbute. For example, in psychological
measures the score is ﬁequontly the number of items vhich are answered cor-
~rectly, If the items are very ditﬁcult and are administered to a group of
first grade childien, perhaps none of the children will get any of the items
correct, If these items are supposed to menau& some kind of intelligence,
ve certainly may not assume that some of the children have no intelligence
because they got none of the items corrsct.
The problem of determining the zero points for a particular group of
measures on a number of entities is usually va}olved by kaubtx"acting thp mean
from each variable, so that the resulting measures indicate the deviation

of eachA of the individuals !‘rcm‘ the mean of the group.




We also potnted out in Chapter b that the scale of ohc nttdhuto may be
quite different from that of another., Yor example, a diference betveen &
score of 5 and . gore of 10 on & test may not be cczparable to the difference
between scores of 5 and 10 on another test, because the one test may have
many more ;tuu in 1t than the other, and the items in the former may bo
much more or much less difficult, | | |

In this chapter, hovever, we shall not consider the problem of ._c.u'n.
_tho variables. It wiJ.J. bte recalled that usually they are scaled so that the
standard devintions are all equal to unity, The more general problem of |
scaling dpd 1ts effect on factor analysis will be considered in Chapter 15.
In this chapter we shell be concerned with prbblem of _origin as they relate
to factor analysis results,

We have in general three kinds of origin problems for a d@ta. watrix of
rav measures, The first of these we may call the major transformation prob-
~ len, thq second, the minor transformation problem, and the third, the doudble

transformation problem,

13,1.1 The Major Transformation Problem, If we have a vertical data
‘matrix having more entities than attributes, the major transformation proce-'
dure conaists of premultiplying the raw data matrix on the left by a matrix

whose order ia equal to the major dimension of the vertical matrix. The
typical major tranaformation procedure for a data matrix consists aimply of
subtracting the mean of each column vector from every element in the column,

We can see, however, that this amount#lto premultiplying the matrix by
a special kind of matrix,‘ as indicated in Eq. (13.1'.‘1). |

x = (I --l-x%'- ) X | (13.1.1)
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Heve ve use ¥ on the right of tho‘ oquauon. to Tepresent the rav #0ore mAtrix,
The X on the left represents the deviation score m;.trix. The order of the
“unit veator 48 N, The matrix in parentheses may be called a centering matrix
because its premultiplication into the rav icori matrix results in thi 4
matrix vhose elementa are centered by columns, |
It is eany to see from Eq, (13.1.1) that if ve premultiply both sides

of this equation by the row unit vector, we must get a null row vector, This
is because pécmultiplicntion of the mt'r!.x in parentheses by the unit vector
ylelds the m.gll vcotor, and therefore the left hand side of Eq., (13.l.1)

must vanich,

We can show vory simply that this matrix operation on the raw score

matrix is the same as if we had subtracted the mean of each column of the
raw score matrix frem each element of the éorreapond!.ng column, Ve indicate

. the computation of the vector of column means by Eq. (13.1.2).

. _Li'r.& | (13.1.2)

This is the raw score matrix premu.l.tipued by a row unit vector and divided
by the number of rows. This is, of course, the conventional definition of
a vector of meana,

The subtraction of the mean of each column from each of the elements in

that column is indicated by Eqs (13.1.3).

X = X -21M : - (13.1.3)

It can readily be seen, by multiplylug out the right hand side of Eq, ‘(13'.1.1)
and using Eq. (13.1.2), that Eq. (13.1.3) results,




It may not alvays be true, hovever, that ve wuh to porrom our analy-
ais upon the dovtntton lcon matrix indicated in Eq. (13.1 .}). Instead of
lubtncttng the mean of each column from the raw score mtr!x, ve may vish
%o add other constants to the coluans, |

 This cane is indicated by Eq, (13.1.4),

U s X1V ' (15,1.4)

Here we may have a general vector of values, V, in vhich each element in the
V vector may be aifferent, Bcme of the elements may be j;oliuw and scoe
negative, If ve have a set of moasures taken from arbitrsry originss, and if
we have & good rationale for determining what the natural origins should be,
ve may adjust the matrix as in Eq, (13.1.4) so that the attridutes of the
matrix U on the left may be regarded as being measured from the matural ori-
gins of the attridutes,

An exemple of natural origins occurs in learning data. One may, for
exomple, have a group of subjecta who are learning a skill such as typewrit.
ing. Measures of proftcisncy for a group of subject may be taken at weekly
intervals., A speed score of kO words per minute during the third week would
be meaningful when compared with a speed score of 60 the fifth week. One may
thersfore construct a data matrix in which the rows are entities or persons,
and the columns are scores made at successive time intervala, To take devi-
ation neasures for each of the successive time intervals rather than retain
the originel measnrre nny 1now prociraly the intformation that one is inter-

ested in studying,

13.1.2 The Minor Transformation. We may have a type of origin problem -

lesa common than the one conaidered in the previous paragraphs, This may be




called a minor transformation, Here the data matrix (s multiplied on the
right by a centering matrix vhose order ts the minor order or width of the

data matrix, Such a transformation is indicated in Eq, (13.1,5),
,
Woe x(zetda) (13.1.5)

llere we have the raw lconym.strix x__,"poltmultlpnu by the centering matrix
in ﬁardnthﬁn. This cperation produces the matrix W on the icrt side of
FEq. (13.1.5) whose rows sun up to 0, It is easy to see that if we postmulti-
ply both aides of Bq. (1).1.5) by a column unit vector, the result must be
& null vector, This is because the caentering matrix'pontmu‘itipucd by the
unit vector yields a null vector.

Lai us now see vhat this type of operation means. We indicate a column
vector of row means by Eq.i(lb.l.é). |
Lat

m = % ' (1301.6)

We see that now the mean of each row is subtracted from each element

in the corresponding row of the original matrix, as in Eq, (13.1.7).
w‘ x X en 1' (150107)

If ve multiply out the right hand side of Eq. (13.1.5) and substitute from
the left of Eq. (13.1.6), we get Eq. (13.1L.7).

We may well ask why one should wish to center a matrix on the right
in this fashion. One may have reason to believe that only the deviations

-of scoresa frcm a pevson's own mean are of significance, Certain models used

in the measurement of personality traits result in right centered data matri.

ces.
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It may be that instead of subtraoiing the mean from each row of a data
matrix, ve vish to subtract some other value, For oxanple, we may have a
-series of blc;pd pressure readings over a period of time for a number of indie
vtduail. It may be thought that the significant measure is not the absolute
bl.ood pressure at any interval, but rather its deviation from the blood
pressure during a given condition of the individual, such as when he is kns‘t-
ing or’whon he first gets up in the morning.

In this case then, a differsnt value may be subtracted fma each of the
rov observations for the individuals, as 1ndicntad>m Eq. (13.1.8).

W e X=vl ’ (13.1.8)

Here v is a vector vhich may represent scme base stats for each of the indi-
viduals, ond its elements may vary from one individual to the next.

In ary case, the results of the factor analysis will be influenced by
the r:lgh.t coxitoring type of operation or the generalization of it indicated
in Eq. (13.1.8).

13.1.3 The Double Transformation, In the previous discussion of the
minor transformation we assumed that no major or left transformation had
been performed on the data matrix. Perhaps the more common case involving
the minor tranaformation or right centering of the data matrix occurs when
there has previously been a major or left centering transrbmation also, It
ia perhaps most common to center a data matrix on the right after it has been
converted to a deviation score matrix vhose column means are O,

The cnse of the doubly centered matrix 18 indicated by Eq. (13.1.9).

s-(r--l-r}i)x(r--l,%-'-) W)

Y et




_Here ve have the raw laorb_nictrix prmulttpu’odvby a ’oovryxtdrilﬁc matrix and palt?
) multiplied by another centering matrix, If mun£ be observed, however, thavt,
theue are nqt /in general tho same centaring mutr!.ou, since the number of en-
' tlttqa is not uuuany tho same as the numbor of attridutes, The number of ene
titles is ordinarily greater ’thun the number of attridbutes, Then the order
of the left qantgring mt‘rtx vill be larger than that of the ri@t ctntprins
matrix, This is indicsted by the scalar quantities used to divide the major
product mement of the unit vectors in the parsntheses, It will be noticed
that on the left this is N, 1nd1cnt1ns’ ‘the number of cases, and on the right
it is n, indicating the number of va’rinbln.‘ | '

Lot us now dsfine a matrix or scalar quantity,k a, as in Eq, (15.1.10).’

a = !%ﬁ—l (13.1.10)

This, ve see, is obtained by taking the sum of all of the elements in the
raw score matrix, and dividing it by the product of tha number of entities
by the number of attributes, and then taking one half this ratio. Obvicusly
then, the value of @ is simply one hall the average valu‘e of 8ll of the ale-_-
ments in the data matrix, |

We next define a row vector as in Eq., (13.1,11),

Mv' = M al - (13.1.11)

We use a prescript M for the V vector, which ia simply the M vector of Eq.
(13.1.2) from each element of which hna been sublracted the acalar a given
in Eq. (13.1.10).

We define another V vector with a prescript m as in Eq. (13.1.12). -

Vo meal ' 0 (13.1.12)




This 1s obtalned by subtracting from oach element, of the vestor of rov means

© defined in Eq, (13,1.6), the g scalar caloulated in Eq, (13.1,10),

Ve now dafins & 3 matrix as in Eq, (13.1,13),
s - %=1 o\ U ' _ ,(1?,1,13)

This is obtained by subtracting from the rav score matrix two major products
of vectors, The first of these is the unit vector 'polmultipnod by the
vector caloulated in Eq, {13.1,11), and the second is the vector caloulated
in Eq. (13,1,12) postmultiplied by the unit row vector, It ean be proved
from Es, (13.1.9) through (13.1,12) that this yields a matrix vhich is both
left and right cpnfcnd. This means that bdoth the éms of rows and columns
are O, » o

It aliould be observed that the same results could have been obtained by
first performing a left centering, as in Eq, (13.1.3), and then performing a
right contering on the resulting matrix, as in Eq. (13.1.7). In this case,
howevér, the right centering would have been performed on the x matrix cal-
culated in Eq. (13.1.3), rather than on the raw score matrix calculated in
Eq. (13.1.7).

As in the previous examples, one may also have a more rational basis
for adding a particular scalar to eaéh element in a colunn, and a particular

scalar to oach element in a row, This model i3 indicated in Eq. (13.1.14).
Yy = X =1 Gv' - ! ' (13.1.14)

Here the V vector and the y vector in the terms on the right side of the

equation vonsist of such elements,




Tn all of the three cases 1nd1u£od, 1f the constants added produce right
or loft centering or both, the analysis is scmevhat simpler than if genersl
scalars are added, as in Eqs, (13.1,4), (13,1,8), and (13.1.k),

13.2 Ipsative Measures ‘ ,

We shall next consider a special type of data matrix which is a special
case of the minor and double transformation types considered above. These
m sometimes called ipsative measures,

Tharovin a rather large class of problems in'psychology which involves
ipsative measures, These measures do not purport to be comparable froem one
individual to another for a given attribute, but only for different messures
of the same individual. That is, the measures {ndicate the relative order
of magnitude of the varia''~ for a particular individual. Fok that individual
the origin of the measures may be quite arbitrary, Measures such as thece
are known as ipsative, as distinguished frem normative measures which do indi-
cate for a particular variable the dif!erencés among individuals, This gen-
eral problem has been extensively treated by Clemans (1956) in a doctor's
dissertation,

’ First we shall consider how in psychology we may obtain matrices of
data vwhich are ipsative or which mereiy indicate from scme arbitrary origin
for each person his value on each of the variables in the set,

13.2,1 Definition of Ipsative Variables, We begin by giving a more
general mathematical definition uf ipsative variables than is commonly used,
We have seen that by a vight veulsaring Lype v opetabion in whicﬁ the row
meana ave subtracted fum each element in a row, we geﬁ a8 matrix the row |
sums of whicﬁ are 0, We could now arbitrarily add some nonstant or scalar

to each of the rows of this resulting matrix so that the rows wnn1a ndd uy
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to a oonuunt tnstesd of uddtm up to 0,

N-xt let us loou ut thn prob!.m ins duroront vay. suppou that ve
have a matrix of l'aw meAsSures obtatned Ln some parttoular mmr, which e
shall discuse {n imore nmu. laters Buppose, howvcr, that. this mntrix ex-"
hibits the oharactertstic thas the sws of rows all add up to the same con-
stant, say, g, as indtoated In g, (13.2,1),

X1 e el O (13.2)

This equation initeates that the data matrix postmultiplied by the unit vector
is aqua). to lom oonstant times the unit veotor,

Buppose now We pcrrom a 1m centoring cperation on this matrix, which
amounts to putting it in deviation form by columns so that the sums of all
colunns are O, This operation is indicated in Eq. (13.2.2).

(r- —1!!1‘") X (23.2.2)

Recall that thu operation simply subtracts the mean of each column from
each element in that column, |
We now prove that the resulting matrix x has the properties of a right

centered matrix, as indteuted in Eq. (13.2.3).
X1 = 0 (23.2.3)

~ This means that the sums of rovs of the resulting matrix are all 0.

The proof ia as follows, From R (13.2.2) we can write Eq. (13.2.4).

x1 » x1oL{lX1) | (13.2.4)

Here we rimply expand the right side of Eqs (13.2.2),




1

Decause of Eq, (13.2,1), we can write Eq.' (1};2.5).
X1« ol'L ol S "(1:.2.5)

‘This means that the sun of the elements in the X matrix is the constant g
times the nusber of entities, N, | "

o If ve substitute Egs. (15.2.1) and (13.2,5) in Eq, (13,2.4), we get ‘Eq.
(13.2.6).

X1 = ¢cl-cl = 0 vv | o (1’.206)

'I‘hil"proves that the sums of rows are O for the matrix in Eq. (13.2.2),

'r§ state the case simply, if we have a matrix whose rov elements add
up to the same constant and we perform a left centering operation on this
matrix, the resulting matrix is such that j.fs row eiements also add up to 0.
" While many of the matrices we deal with in psychology are not diréctly of

the right centered type whose rows add up to O, nevertheleas, vhen they are
left centeied or put in deviation form, the rows are also in deviation fomm
or have the property of right centered matrices.

13.2.2 Sources of Ipsative Variables. We shall now consider a number
of different ways in which ipsative matrices can arise. We shall use the
tern ipsative to cover any set of measures with entity rows and column attri-

- butes such that the row sums add up to the constant, whether this constant
ia 0 or different ﬁ'om 0. _

One type of model which involves the ipsative matrix is the differen-
tial prediction modcl.s In this model we attempt to prevdict in vhich of a

| number of activity variables & person would be most likely to be superior,

The qQuestion, however, is not what his score or performance would be kln each
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of tho orttorton variables as ompnnd with other pcuonl in the sample,
but hov good he would be in sach orttorion measurs rola.ttv- to his porrom-
ance ln each of the othor oriteria,

"It can be shown 4n methods develcped by Horst (195&) that & loluuon
of such a problem results from the tono\dng operations, We require a
matrix of intercorrelations of predictor with orlurion'mubhl. ‘This
may or oay not be a matrix on vhich the correlations for all pairs of mt-
ublu are based on all the cases, Usuauy it wul not bo, as ve have seen

~ in Chapter 11, In any caai , suppose we have such a correlation matrix in

which the rows are corrolations of a given pécdictor variable with all the
oriterion variables, or in which a column is the correlation of a given cri-
terion variable with all the predictor variables, If ve take such a matrix
and‘perrom a right contering operation upon it, we then 4huve a resulting
matrix whose rows add up to 0, By means of methods which are deyond the
scope of this text, we then use this right centered matrix together with
other dnta to derive a matrix of prediction weights to apply to the pre-
dictor variables, 80 as to give the best differential prediction of success
in the criterion variables,

Another source of ipsative measures comes frcm what is known as the
forced cholce type of psychological inventory. Hém the subject 18 pre-
sented with pairs or groups of items, He is instructed to indicate which
of these is most like him, which he most agrees with, or some other instruc-
tion vhich requires him to m#rk only one of each pair or group. it these
scales are properly constructed, theyhave the advantage that the subject -
1s choosing among the two or more items on the basis of two or more differ-

ent traits, rather than on the btasis of some single dimension, such as social

e e e e o ot
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' 'dui.rubiuty. Examples of au&h inventories are the Edvards Personal Proror; |

ence Schedule, the Kuder Preforonc- Rocord, ‘and others,

- One of tha chauatariluas of these measures u that normally the I.temu '
are paired or groupod in luch Y ruhlon that the total of each person’s scove
on each scale is & conatant, That is,b 12 the inventory is scores, say, for -
15 difforent traits or measures, the sum of each person's measures wﬂl add
up to the same constant. This means, then, that if a set ot‘mnurn is ‘
transformed to deviation measures by a lsft centering opei'ution, the sum
of rows of the resulting matrix will be 0, o

Another scurce of ipsatized measures may occur when it is desired to
detormine experimentally the properties of {psative, as distinguished from
mn;..m., measures, Wright (1957) administered the Edwards Personal Prefer-
ence Schedule to a group of individuals, The items in the schedule were al-
80 prepared in a rating scale format so that each item was presented singly,
and the same subjects were requested to respond on a rating scale which in-
dicated the extent to which the item applied to thems It was then possible
to get a score for each of the traits preumpbl& measured by the scale, by
means of an appropriate scoring key. The pfobleni was to ses how the results
of this kind of format compared with those of the forced choice, after the
rating scole measures had been ipsatized by means of a right centering oper-
ation,

Another type of ;psqti_zation seems to occur, in part, with self-apprais-
al inventories of the intcrent, pevsonality, and temperamunut type, even
though the items are not in paired or forced choice format. There is evi-
dence to indicate that, if a person is presented with a set of items or

statements in which he is asked to indicate how well each statement appliea
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to him, he engages in & sort of self-ipsatizing operation, In oﬂior vordi,
he tonds to adopt scme sort of an average of sll of the items as they apply.

%o him, and then indicate vhich of the Ltems 1s above and which below his
~ own average for all of the items in the set. There seems to be & tendency

to adjust oneself to the particular set in a relative rather than an absolute
sense, This dypnu to be & special case of s general phencmenon in which it
15 easier to make ccﬁpnnﬂ.vo Judgnents rather ﬂian absoluts Jjudgments,

In any case, factor kamlysu of items of this kind seens to give results
which indicate that a sort of partial ipsatization has been taking phcc,
even thouab not a ccnphu right centering type of aperatton.

13.2.3 Characteristics of Ipsative Matrices, The effect of either
right or left 'centering of & matrix on the rank of this matrix is of cons
aiderub!.e importance, It is enpeciany 80 vhen ipsative measures are used

" as predictor variables, If, as is ususlly the case, there are more yntltiea

than attributes, then the ipsative matrix, after left centering or converaion
to deviation form, is reduced to o rank one less than its width.
This can be seen from Eq. (13.1.5). We learned in Chapter 3 that the

- product of any two matrices cannot be greater than the rank of the factor of

smaller rank, If the matrix in Eq. (13.1.5) is vertical, the rj.ght center=
ing matrix in parentheses will be of the same order aa the width of the data
matrixe Its rank, however, will be one less than its order; othendse,» it
would not be orthognnal o the unit vector. It can also be proved that it 1s
Qt rank only one less by showing that it ecanmot e mithogonal to any other
than the unit vector, |

As already indicated, ipsative measures, whether derived from experi-

mental or from computational procedures, cannot be normative in the sense ;
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that one person can be compared with another with respect to » linglc varie
able, This is, of ocourse, bscause scme arbitrary constant has ‘b‘«n added or
subtvacted from all scores of each subject memsured, Oince this is not tn
‘Ammral the same constant for all subjects, the resulting measures are not
coinyuabh from one ;ub,joot to another, This limlution of ipsative measures
is often overlooked, Frequently, persons are erronsously ccmpurid vith one
another with respest to ipsative measures,
13.3 Basic Otrusturs snd tho Problem of Origin
We have indicated in HSeation 13.1 of this chapter that in pmm the
factor analytic results will vury' for a given data matrix uécording to vhat
is dona about fho problem of urigin, The importance of this fact 1s not as
widely recognized as it should be, We shall therefore examine the effect of
row and column origin transformations on the basic structurs characteristics
of the data matrix. |
In vhat follows, we shall not be coﬁcermd with vhether the scale units
are tho same for each of the varisbles in the set., We shall assume for the
time being that some sort of rational or natural schling is available, or
tha£ the variables have been scaled in terms of standard deviation or equal
variance units. The problem of scale will be considered in more detail in
Chapter 15, even though the influence of scaling on basic structure is cur-
rently not well understood,
In the following sections we shall consider four cases, The first of
these asgumes that we have a left centered matrix in equal standard deviation
| units, and’that wve have already available the basic structure solution for
the corresponding correlation or normative covariance matrixs On the basis
of this solution we wish to determine the basic structure of the raw covaris

ance matrix, i.e., the covariance matrix of the data matrix prior to left




gontering, -
fThe second case assumes that we huvodthq'bﬁslc'ittuaturo factors of the

covariance matrix prior to left cantofing, and we vish to find the basic
structure matrices of the corralutioh matrtx as runctiohu of the buola struce

ture factors of the raw covarlance matrix.

The third case assunes that the deviation or normative dats mateix has
also been centered on the right, We shall investigate the billc structure
of thobminor product mement ipsative covariance matrix of this 1pndt1v§‘dnta
matrix, as a function of the bauickltructuro tnctdrl of the correlation or

normative covariance matrix,

"~ In the fourth case we have the basic structure of the covariance matrix
obtained from the ipsative data matrix, and from this we vish to calculate
the basic structwre of the correlation or normative covariance matrix.

We shall now consider some relationships nmongkthe four types of covari=-

ance moatrices,

13.4 Basic Structure of Raw Covariance Matrix from Correlation Matrix

13.h.1 Computational Equations
13.4.1a Definition of Notation

X 13 the raw score matrix.

X 18 the deviation acor§ matrix.

M' is the vector of means,

C 18 the normative covariance matrix.

@ ia the raw covariance matrix.

s s b oA eese ,



9 ti'thd basio orthﬁnorncl of 2. ,
‘g is the basio orthbndml o!" g
8 1s the basto aiagonal of Co

g is tﬁd basic élagona]. of g.

13.4,1b The Equations
- x = PAQ
C a x'x » a8 ¢

G » XX = RgH'

Y = Q'M

IfL = )

Y, = Vv

IfL > 1

'L L-l

VL L

(13,4.1)

(13.4,.2)
(13.4.3)
(13.4.4)
(13.4,5)

(13.4.6)

(13.4.7)

(13.4.8)

(13.4.9)

(13.4,10)
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ey ‘ ' | :

2 : S : )
L . 1'5'1 5:-2‘7“—“ 1 ) (13,4,12) ‘
e | W | <P <0 |
L " - e
Ir Vkrb<o .‘
ST A ) o o (13.4.14)
kk+1YL» - KL | ' (13.4.15)
. If F, >0
| o eile " 2L | (13.4.16)
k+1y¥. " WL (23.4.17)
£, = (6 -9, 1)V ' (13.4.19)
H « q(r D;}l‘f) - (13.4.19)
8y = nﬁ . (13.4.20)

13.h,2 Computational Instructions, We begin with a score matrix X,
and for the sake of aimpliéity ve assume that the measures all have unit
standard deviations. We then apply a left centering matrix as in Eq. (13.4.1).
This, as ve know, éimply subtracta the mean of each of thé measures from evarjr

element in that vector.

§-i
i, i
W
2

e
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Next wo indicate thp'basic structure of this standard acore matrix X,
as in Eq ’(13.!¢.é).' 'I’ho.r!.ght hand side is the product, from left to vight,
of the left orthonormnl by the Lasic diagonal by the right orthonormal.

The means of the colwans of tho k matrix are 1ndiaatcd in Eq. (13, h.)).
Thil is simply a row vector of the means of the variables,

Tho covariance minor product moment of the mateix in Eq. (13.4.2) is
gLVQn by Eq, (lb.h;h). Obvibusly, the left basic orthonormal disappears and
the dlagonal ® 18 the square of 4 in Eq. (13.4.2). |

Eqe (13.4.5) 18 not a computational aquation, but is given to 1ndicn£c
the minor product moment of X in terms of its basic astructure. Tho basic
orthonormals are H and ﬂ', respactively, and the basic diagonal is g. We
assune that the Q and the 3 matrices in Eq, (13.,4.4) have been calculated
according to one of the basic ntructure’methods of factor analysis indicated
in provious chapters, Tho problem now is to find the basic structure factors
of the G matrix as a function of the known basic structure fnctor‘a.‘

Firot, we calculute the V vector as in Eq. (13.h.6). This vector is the
tranupose of the Q matrix calculated in Eq. (13.4.4), postmultiplied b, the
vector of means calculated in Eq. (13.4.3). ’

To solve for the oy, elements of g we proceed a3 follows.

IfL=lve calcu.l-:te a scalar .Y, as the sum of the minor product

1l
moment of ¥ in Eq (13.4.6) and the first element of 8, viz., 8,, as shown

in Eqe (134e7)
Wa then set o scalar VL equal to bl as indicated in Eq. (l).’t.ﬂ).

If L is greater than 1 ve get lYL equal to 8, ,, aa in Eq, (13.4.9), and |

we set iyL aequal to bL’ ag shown iu Egq, (13.&.10).

'



In any case, as shown in Eq, (1}.'0.11), ve set n soalas kzn equal to | S
tlw average or kYL and ,yL whers the latter twa o.re dotomlmd {teratively,
‘ns wo shall shov nhortly, for X golng from ) to scme prespecified ltarutl.on
linmit,

Yo cubstltuto 10 B (3.412),

Ir kFL is uurﬂctcntly close to zero, as :lnd!.cutcd by scme tolomncc

limit P, we take ZL as the value of pL, as shown in Eq. (13.4,13).

IT is negative, we net a new Y equal to kzL and the nev Y will be

KL _ ,
the same a3 tho previous one, as shown in Eqs, (13.4,14) and (13.4.15).
'Ir kFL is positive, ve get the new Y oqual to the current Z and the

nev y is the same ag the provious one, as shown in Eqa. (13.4.16) and (13.4,17).

Once all of the g's huve been solved for, we solve for vectors which are

proportional to the vectors of K glven in Eq. (13.5.5) by means of Eq.(13.4418),

This gives the solutlion for the ith column of an f matrix, As will be seen
on the right of this equation, the V vector defined by Eq, (13.4,6) 1s pre-

multiplied by the inverse of a diagomnl matrix, This diagonal matrix for

the ith column of the £ matrix is obtained by subtracting from the 8 matriz
of BEq. (13.4.4) the gy olready solved for, | » - _ b

The I vector so;.-v-cd for in By, (13.4,18) is then normalized, as indi-
cated by the product in parentheses on the right of Eq. (13.4.19). In addi~
tion, the normalized f matrix must also be premultiplied by the § matrix

solved for in Eq. (13.4.4) to yleld the H matrix of Eq. (13.4.19).

To get the principal axis factor loading matrix for the @ matrix in Eq.
(13.4.5), the H matrix calculated in Eq. (13.4.19) must be postmultiplied by f
the square rcot of the diagonal ratrix of g values, This is indicated {in Hq. '

(13.4.20).




=
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13.4,3 Munerical Exmnple |

In thio oxzuupln ve shall use the uame oorvalatton mutrix as in provious
ahaptoru. The veator of meana used to genoratc the av covuriance matrix is
aivon in Table 13, !& 1, | |

Ve phall prosent the three oovaﬂonco matrices = raw, nomative, and
tpuutLVo, us well ns their dasic structures., The ipeatizing Qector in the
last tvo oxmﬁplon ”wu'o taken as the unlt vector divided by /n.

Tabla 13,4,2 gt\}oo the rav covorianco matrix @ which wno obtained by
adding the major product moment of the vector in Table 13,.k,1 to the’ corrolu-
tion mntrix.

'I‘ho firat row of Table 1}.1».5 glves the busic diagonal elemants, g, of
the raw covariance matrix., 7The body of the tuble gives the basic orthonormal
i of the raw covariance matrix in Table 13.4,2,  These wore calculated from
G by a method in Chnpter 9, as were also Tables 13.4.5 and 13.4.7.

Table 13.k.4 repoats for convenient reference the correlation matrix R.

The first row of Table 13.4.5 gives the basic dingonnl elements 8 of the
correlation matrix R. The body of the table glvea the basic orthonormal
matrix @ of R,

Table 13.4.6 glves the ipsative covariance matrlx culcolutcd from the
correlation matrix by the eyuation p = (I - —-— ) R(I - —-L').

The {irst row of Table 13.%.7 glves the basic diagonal elements of the
ipsative correlation matrie po The hody off the table gives the basic ortho-
nommal matrix g of p.

The flxst row of Table l}.h.B gives the basic diagonal elements, g, of

the vaw covariance matrlx as calculated by Eqs. (13.h.7) through (13.h.17).




Tha'body of the tablo glveu tho basia orthonormal §i! as calculated rrom
Eane (13,5,18) ana (13,4, 19)s Note that this matrix 1- the tmnupono of
tho one in 'rubla l} 43¢ - The valuos in the two tablu ugree within limits

of decinal nccurauy.
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Table 13,4,1 « The Vector of Means of the Data Matrix
0, +0,3 +0,2 0,1 «0,0 0,1 0,2 0,3 O,k

Table 13.4,2 - The Rav Covariarce Matrix @

1,16000 o.9kqoo 0,84800 0,14800 0,03300 0,06600 oemoo 018900 0,19100 o
0,84800 0.8)500 1,04000 0,29200 0,20500 0,21800 0.25600 o.euoo 0.30:00
0,14600 - 0,14500 0,29200 1,01000 0,63600 0,61600 0,22900 0,15300 0,32900
0,033¢C0 " 0.,06100 0,20500 0.63600 1,00000 0,70900 0,13800 0,09100 0,25400
'0,06800 0.09500 0,21800 0,61600 0,70900 1,01000 0,21000 0,13300 0,33100
0.,21800 0.26300 0,25600 0.22900 0,13800 0,21000 1.04000 0,71400 0,(0700
0,18000 0.25700 0,21100 0,15300 0,09100 0,13300 0,700 1.09000 0.66100
0.19100 o.ahooo o.:osoo 0.32900 0.25400 0,33100 0.60700 0.66100 1,16000

Table 13.4 .5 Basic Diagonals g, and Basic Orthonormal H of the Raw Covariance
Matrix

3.75072 ‘2.18721 1.72066 0,50400 0,kO76 0.34773 0,28544 0.22741 0.16937

0,37762 0.45666 0.17015 0.0LOTH 0.00506 0,00084 0,)21851 =0.45801 -0.562602
0.38013 0.41650 0.12300 0.02755 0.1C607 0,06037 0.05831 -0.24569 0.762h6
0.403C9 0,29841 '0,19922 -0.08977 -0.03480 -0.04380 =0.21507 0.79846 =0.11536
0,28081 <0,34966 0.29652 0.0915T7 =0.80422 0,10769 0.18423 -0.04775 0.06773
0.23789 -0.41259 0,354h1 0,10045 0,29603 0.24950 -0,66799 =0.20104 «0,03115
0.26485 -0,40862 0,30373 0.02755 0.48419 -0.24399 0,60225 0.11329 =0,01920
0.3262% =0,12208 -0,44122 0.49806 -0,06532 =0.6191h -0,21504% -0.0L648 0.0108h
0.51173 =0,10407 -0,52983 0.26521 0.11557 0.68133 0.20372 0.1305h -0.06949
0.36221 «0,20973 +0.36750 -0.80740 -0.03244 -0,11623 -0,07552 =0.13262 -0,004G0

Tabla 13.4,% - The Hermutive Covariance or Correlation Matrix R

1.00000 0.82900 0.76800 0,10800 0.03300 0,10800 0.29800 0.30900 0.35100
0.82900 1.00000 0.77500 0.11500 0.06100 0,12500 0.32300 0.34700 0.36900
0.76800 0.77500 1.00000 0.27200 0.20500 0.23800 0.29600 0.27100 0.385C0
0.10000 0,11500 0,27200 1,00000 0.63600 0.62600 0.24900 0.18300 0.3600
0.03300 0,06100 0.20500 0.63600 1.00000 0.70900 0,13800 0.09100 0.254C0
0,10800 0.12500 0.23800 0.62600 0.70900 .1.C0C00 0,19000 0,10300 0.291C0
0.29800 0.32300 0.29600 0.24900 0.13800 0,19000 1,00000 0.65400 0.527C0
0.30900 0.34700 0.271C0 0,18300 0.09100 0.10300 0,65400 1.00000 0.54%100
0.35100 0.36900 0438500 0,36900 0.25400 0.29100 0,52700 0,.54100 1.000C0

Table 13.h,5 = Basic Diagonals 8, and Basic Orthonormal Q of the Correlation Matrix
3.70907 2.04953 1.33079 0. h7hh2  0.38261 0.347h0 0,28533 0.21215 0.16870

0.37009  0.34414 -0,30364 0.C4349 0.01542 0.00399 -0.12630 -0.hk24k9 ~0,66221
0.38211 0433393 <0.27978 0.08123 0.0764T -0,05713 -0.06068 =0.31066 0.7h085
0439915 0,20657 -0.35222 -0,01294 -0,14028 0.02245 0.2329% O0,T7085 -0.07157
0428690 =0445323 «0.0585% - TLAGD o (1AL w0,158550 <0, 1THh00 -0413710 O.0h75h
10423932 <0.510¢(6 -0 A5GTL  0.166M4  0,29930 -0.2290h  0.6ELTh «0,19627 -0.0h304
0,26733 01451 -0,16335 0,18680 0,h0810 0.26L48 -0.60502 0.16939 -0.00176
0.33081 0,05559 0450930 0.41816 -0.18573 0.606y2 0,21552 -0.06236 0,00760
031700 0,11592 0.53843 0.23892 0.11339 -0.677890 -0.20136 0.15045 -0,05702
0436920 <0,02350 031947 -0.62141  0.2439%  0.14790 0.05259 «0.03072 0,00989




Table 13,4,6 = The Ipsative Covarinnas Mateix p

- 0,56570
© 037915
~0,20059
. '_0029896
=0, 32(07
=0,28030
=0,12196
=0,001h1
=0, X1hTH

‘I'ubie 150!‘ .

’ 2.98395

=04 500G
=0, 38541
«0.26670
00’30555
0.’0830!‘
0.hh111
«0,09835
«0,15311
«0,03365

Table 13.4,8 « Pasic Diagonal Elements

0.3776
0.4566
0.1701
0.0’|08
«0.0050
0.0008
«0,1185
0.45%
0.628L

0,37915 0.28853 v0,20806 +0,32607 +0,20030

0.53‘5‘ 002000 =0, 250752 '0951363 '0.;!’885
0,28004 0,47548 +0,18007 =0,19919 «0,19%541
=0,50752 «0,1£007 0,62037 0,30h26 0,26504
«0,31363 »0,19919 0,30426 0,71615 0,39593
<0,27605 -0,19541 0,26504 0,39593 0.,65770
«0.11252 «0,16907 «0,14363 =0,206Th =0,18396
«0,06896 =0,17h52 0419007 =0,23419 =0,25141
«0,11230 -0,12585 «0,06041 =0,13652 =0,12874

7 = Basic Diagonals 4, and Basie Orthonormal

Matrix p,
1435155 0,40207 0.3834T 0,34929 0,2853k

0,30627 =0,04279 «0.0L569 0,00L50 =0,12549
0.28215 -0,07309 -0,07203 -0,04748 -0,06101
0,35823 0,04678 0,15209 0,0350L 0,23107
0.,C6788 - 0,18405 0,77628 -0,18L70 =0,17375
0.16}9” '0.166’”“ "00290% '0020860 0.66065
0.17168 -0,16513 «0,30436 0,29794 «0,60680
<0,50431 <0,37720 0.22433 0,61827 0,21600
~0,5%508 =0,24311 «0,12428 -0,65532 -0.20398
«0,31090 0,83691 -0,25656 0,13948 0,0633)

from Dasic Structwe of

«0,12196 «0,09141
=0, 11252 '0006896

«0, 21474
«0,11230

'00069"1 o

«0,14363 =0,19007
'002067 '002}"19
=0,108396 «0,25141
0.59437 0,206793

«0,130652
«0,12074
0,075%9

0.,26793 0,63348 0,10915

0,07559 0,10915

0,50261

of the Ipnsative Covarianco

0,21507 0,690k

0.44869 -0.64965
0.20349 0,75083
-0.77588 -0,08622
0.13256 0,05212
0,17h97 =0,032h1
-0.18124 -0,00148
0.,05703 0,01119
<0,17530 =0,05301
0.03572 0,00862

«0,00000

0.33334
0,3333h
0.3353h
0.33333
0,3333h
0.3333h
033333

0.35328

033332

%, and Basic Orthonoimnl H' as Determined

2,16720 1,72065 0.50401 0,407h6  0.34773 0.28544 0.22742 0.16938

0.3882 0.4037 0,2068 0.2380 0,2648
0.4165 0,2984 =0,3497 -0,h127 =0.4086

- 0,02T6 -0.0897 0.0915 0,1005 0.0275

-0.1061 0003"8 0080h2 '002960 -0."8!42
0.060h =0,0438 0,1077 0.2495 =0,2440
-0,058% 0,2151 -0,1843 0.,6679 ~0,6023
0.2457 -0,7984 O.O47T 0,201FL -0,1133
<0.,762h  0,1153 -0,0677 0,032 0,092

0.3262  0.3117
~0,1211 «0,104L
0412 <0,5298
0.5980 - 0,2652
000653 ‘Oo 1156
-0.6192 0,6813
0.2150 «0,2037
0.065 -0,1306
-0,0129  0,0695

0.3622
«0,2097
0,365
=0, 80Tk
0,0325
«0,1162
0.0755
0.1326
0000,16

s e e okt B .
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13;5 The Hovmdtlvq Cdvavldnao Basic Btructﬁra from the Ruvw Covurinnco‘ndllo
. Oteuctuve |
15.5;1 ’ccnipututional Equations
13.5,1a Definitian of lotation
The nofution ls the sume na in the pravious section,

13.5.1b - The Equations

Vv = H'M | (13,5.1)

Ya t | (13.5.2)

lyl'l - O’ (150503)

1YL » pL | (15-5.&)
Y +.y

RZL ™ )-‘-—L-é—,-‘.—é (13.5.6)

n Y (13.5.7)

F, » £ =—tw .1 el

My = H(s -8 1)V (13.5.8)

W.L i

G = = — (13.5.9)
VAR
13.5.2 Camputational Instructions ,
Itrst we calculate ;tlle vector V of Eqs (13.5,1)s This is the vector of !
means prepwltiplied by Lhe right orlliononinnl ol Whe ruw vuveriance mutrix,v a.
Byse (13.5.2) and (13.5.3) give the limits of the normative basic dingun-

al, 8 ¢ Eas. (13.5.4) and (13.5.5) glve the limits of the normative basic
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dlagonals for 8, whore L is less than g.‘ |
Eqe (1}.5?6-) glves tho kth approximation to the Lth basic dlagonal, bL'
" 7o solve r9r>thc Eﬁh/ basie diagonal of ,8,, ve use Eq, (13.5.7) 1tqr:-
ntivaly,‘na'wc used Eq. (13,4,12) to solve to;-;L. Vie note, however, that
the last tem on tho right in Eq, (13.4,12) s :;; vheroas it is -1 for Eq,
(13.5:7)s | | -
Having solved for the B's, we substitute these in Eq. (13.5.8) to solve
for a vector proportional to the Lth vector of Q, the basic orthonormal of

the corroelation or hoimutlve covariance matrix.

Eqe (13.5.9) shows the normalization of the W p, Vector of Eq, (IBQS.B)

to give the Lth vector of Q.

13.5.3 Nunmerical Example

The first row of Table 13.5.1 gives the basic diagonal elements B of
the correlation matrix R as calculated by lgse (13.5.1) through (13.5.7).
The body of the table gives the Lasic orthonommal Q' of R as calculated by
Eqs. (13.5.8) and (13.5.9). lote that this matrix is the transpose of the
one in Table 13.4,5. The values in the two tables agree within limits of
decimal dccuracy. | |
13.6 The Ipantive Cdurlnnva Taaie Strnctuve ficm the Nornative Covariance

Rasic Structure

13.6.1 Computational Equatiens

13.6.1a Definition of Notation

R 1 the normative covavinuce matvix.

Q ia the btasic orthoncrmal of R.




T

9_ ﬁ thy basic diagonal of i_!_.
] 1 tf}t {poative cnydriando mngilx_.
g s the basta orthonomal af g
d is t.ho bnil.c d@;#ohal of p.
V 13 & normal vactor vhose order 1s the same as R,
" The :Qiatim batveen p and R 1a glven by o = (I1-vV')R (i -v v
13.6.1b The Equaticns |

Uedv ‘ - (13.6.1)

v oady  (13.6.2)
AN (13.6.3)
lyn - o (15.60“)
Lt Y | (13.6.5)
L/ YO R (13.6.6)
Y, + .Y , '
2 li..r.‘_.é.'_‘_ﬁ (13.6.7)
n HE ( 6.8)
F, = I g—"—>—-1 13.6.
L a bt
q, = (-9 1) vs (13.6.9)
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Table 13,5.1 « Basie Diagonals 8, and Basic Orthenormal g/ as Deterntned frem g

3.74907 2.04952 1,33077 o;u7uua 0.38262 o.3§7ho 0.28533 0,21215 0,16671

=0,3701  -0,3821 «0,3991 -0,2869 -0.2392 0,2674% #0,3308 -0,3176 0,393
©=0,3hh2 20,3339 <0,2066 0,4532  0,5197 0.4846 -0.0556 «0,1150 0,0035

=0,3037 -0,2787 «0,3522 «0,0586 <0,1567 -0.1633 0,5093 0,5384 0,3195
0.0154 . 0,0765 -0,1403 -0,7818 0.2993 0.408L -0,1858 0,1134 0,24k0
0.0039 =0,057L 0,022k -0,1555 <0,2291 0,264k 0.6069 +0,6778 0,479
0,1263 0,0606 «0.2329 0,1739 -0.6618 0,6058 -0.2156 0.2013 -0,0626
=0.h425 «0,3106  0,7709 +0.1371 «0.1962 0,1693 +0.0623 0,150k «0,0307
«0.6622 0,7Th09 -0,0715 0.0476 -0,0431 -0,0017 - 0.0075 =«0.0570 0.0089
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13.6,2 bcmputa‘uom'l Instruations

Eq. (13.6. 1')' defines a vector U which Ls the jrnduat. of the right artho-
bnormal matrix of R pmtmultlpliod by the tpsnuzlna veator V. | 7

.Eq. (1}.6. ) defines a vector W which {s the product of the ] veator in
Eq. 15.6.1) premultiplied by the square root nf the bastc diagenal af R

Eqs. (13.6.3) through (;5.6.6) givi the first nppréximtiaﬁn to the
limits‘ot" the basic dlajonall of p, the ipsatized covariance mtrlx’.
L £q. (13.6.7) glves the i_t_th approximation to the Lth basic diagoral of
g | |

The iteration procedure for getting successively smaller beunds for the
d's is the sama as in the two previous methods, except that now Eq. (13.6.8)
is the iteraticn equatinn, It is of the same rom’aa in the previous twn
methods, In this case the "1" is subtracted on the right as in Eq. (13.5.7).

Eq. (13.6.9) gives the caleculaticns for th§ 9y vectors of the basic
orthonormal g of p, The factor g on the extreme ;;;ht is a normallzing
scalar. v

13.6.3 Numerical Example

The first row of Table 13.6.1 gives the basic diagonal elements d of
the ipsative matrix £ as calculated from Eqs. (13.6.1) thx"ough (13.6.8). The
bedy of the table gives the basic orthonormal g’ of p as calculated frem Eq, .
(13.6.9). Note that this matrix is the transpose of the cne in Table 13.4.7.
The valués in Loth tables agree within limits of decimal accuracy, vexcept
the last line of Table 13.6.,1. This discrepancy ta due to the srror in the

last bugia dingoual whtch should be 0 {ngtend of' 00002,




Table 13,6,) '-’Dnuc Dilagonals 4, and Basic Orthonormal
Baste Jtructure of R

%0

q' as Dotermined frem

2,00395 1,33155 0.48296 0.30347 6.510926 '0.2853270.215976 '0.1696;‘ 0,00002
0,0336

0,392}
0,3062
-0,0428
~0.0157
0.0015
0.1255
0. h4B7

=0.6496

.5171

0,3054  0,2667

0,2021 0,3583

=0,0731  0,0468
=0,0728 0.1521
<0,0475  0.0359

0.0611 -0,2310

=0.2835 0.7758

0,7508 «0.0862
0.2582 -0,0732

=0,h053
10,0079
0,1841
0.7763
=0,1817
0.1738
=041325
0.0521
0,2h48

=0,4830

0,1640
0,166k
«0,2088
-0,2085
«0,6606

=0,1750

=0,0324
0.5206

=0.h411
0,1717
«0,1651
=0, 3844
0.2979
0.6069
0,1813
=0,0015

=0, 5043
=0,3772
C0.2743
=0,2160
- <0.0570
0.0112
0.2746

0,1551
=0,535L
=0,2431

«0,1243

=0,6553
0.204)
0,1754
=0,0530
0.4190

=0.5109
0.8369

=0,2507

0.1395
«0.0633
=0.0357

0.0086

0.0571
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13,7 The lormativa Covariance Dasic Btructure from the Ipaaﬁivc' Pasto
 Btruoture o |
15‘.7.11 Computational Equutions
15.7.1& Definition of Notation
The notation is the same as in Soction 13.6.1,
 1347.1b  The Equatlons ' '

U =RV ' | (23.7.1)
‘W oe qU : © (13.7.2)
a = VU o (13.7.3)
4, +n o '
1, 3 (13.7.4)
1yl b dl ‘ (150705)
WL 4 (13.7.6)
LI , (13.7.7)
Y. +.¥
, k'L ¥ L
RAL_ - -2 ‘ (130708)
nel wi ( )
F, om L m—e—te 4+ 2 -q 134749
k'L Ll dL - kLL k'L
Oy = (V-a(a-8 1) Wa (13.7.10)

13.7.2 Computational Instructions
Eqs {13.7.1) glves a vector U as the pruduct of the normative covariance
matrix postmultiplied by the Llpsatizing vector V. If one has only the p

matrix to begln with, as in the case of ipsative pepsonnlity measures, then
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one may be able to hypothesize a u vootor, for tho computnttonal prouaduru
roquh'an only the U vegtor and not thc R matrix as such,

Eq. (13, 7.2) given a W voctor as tha product of the rtght onhouomal
q’ or g and the U vector of Eqe (13.7.1),

'rhe noxt step i3 the caleulation of the acalor @ in Eq. (1} Te3)s This
is thc minor product of the U and V vectors. ’

'I'ho outer ;Lmtts of the firat basic diagonal of R, viz. 51, are aivven

by Eqo. (13.7.4) and (13.7.5). 'The 1Yy value ansumes that the normative

matrix 1o actuslly a correlation matrix so that its trace is n, the order
of the matrix, It ic well known that this trace is the sum of the basic di-
agonnls, hence 61 must be leas than n. v 7

Eqs, (15.776.) and (13.7.7) give the outer Limits of the remaining 8,
values, -

As in the solutions of the previous sections, the kth approximation to
bL ia given by zL in Eq. (13.7.8).

Eq. (13.7.9) glves the Lteration equation for the 8,
procedure is used for narrowing the limits of the bL's ;: in the previous

values, The sane

sections, ]

It 1a to be noted, however, that thc.sumnation gees only to n-1. This
equation also differs from the corresponding equation of previous sections
in that the right hand side includes the Z and @ terms instend of "1*,

BEqe (13.7410) shows the calculations for the Q.L vectors of the basic
orthonovmal of Re The 8, on the axtieme ripght ia ;_u.unnnlizi ng acalar,

13,'{ 3 Numerienl I-E:mnple

The fivst row of Table 13.7.1 gives the basic dingonal elements §_ of

the covrelation matrix R, us calculated frem Egse (13.7.1) threugh (13.7.9).
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The body of the table glvey the hasla orthonormal g/ of Q,’au'uuluulatad from
Eq. (i).?.lo.). Nots that this matrix i the transpone of thcvonc in Tubl&*
15.4,5, The values Ln the two tables agroo within limits of doalmgl AceurAsy,
15,8 Mathematloeal Proofu

15.8;1 Basia Jtructurs and Leflt Cdntevlng

QGiven thae mnﬁrtx

x = (I - lﬁﬁ') X 3 C(13.8.1)
and ; ’

x » PARQ ' | ' ’ . - {13.8.2)

wow BX (13.0.3)

" From Eqs, (1%.8,1) and (13.8,3)

x' x + MM = X' X (13.8.4)
Let
cC = x' x - {13.8.5)

¢ = X' X ' (13.8.0)
From Eqs. (13.8.4%), (13.8.5), and (13.8.6)
C+MM = ¢ (15.8.7)

From Fqs. (13.8.2), (13.8.3), and {13.8.7)
0 a2 Q'+ MM = @ : (13.8.8)

Let us now find the roots of G.

Assume @ fs vertical, Let 3 = ’2_1 and !il be a complement of Ql‘ In partleular,




LU

* Table 13.,7,1 = Dusis Diagonals 8, and Dasto Orthonormal §/ as Determined from
- Paute Otruature of p and from RV

3074006 2,00952 1,33080 O,h7M43 0,38261 O0,347HL 0,28533 0,21215 0,16070

0,370L 0,382 0,399 0,2069 0,2302 0.,2673 0,3300 0,3177  0.3693
~0.24h2  <0,3340  -0,20660  0,4532  0,5197  0.4843 0,055 =0,1159  0,0235
=0.J037 =0,2/£8 «0,3501 +0,0585 <0,1567 +0,1633 0.5093 0,5385 0,3195
0.0135  0,0802 -0,0129 «0,1486 0,1665 0.1868 ~ 0,h181 ~ 0,2300 -0,801h
0,015h  0,0705 =0,1h03 «0.7018 - 0,2993 0,h081 -0,1858 0,1134h 0,2439
«0,0039  0,0572 -o.oezﬁ 0,1555 0,229 -0,2644 «0,6069 0.6778 =-0.1479
«0,1263 -0,0006 0,2330 «0,17h0 0,6618 -0,60580 0,256 -0,2014  0,0626
0425 0,506 «0,7709  0,137L 00,1963 =0,1694 0,062% -0,150% 0,0307
0.6622 -0,7%08 0,0716 +0,047G  0,0431 0,008 =0,0076 0,0570 =0,0089
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‘w8 may have
9 Q3 RN 4 o , (15,.8‘.9)

 whare 3‘1 is the partial triangular factor of the right of Lq, (13.8.9),
From Eq, (13,8,8) ve may write

-~y

a2 o |l o]
+ MM = I [H, = 0 (13,8.10)
(0 0 : ,

(q QJ_) Q.'s

o

—

where H , 18 a baste vector of a.

From Eq. (13.8,10)

r - - - - -
a? o Q| | # 1 0 ]] Q
. + "MM'(Q’.,QJ)-‘ ! g =0
ol s Lot LY
; (13.8,11)
Lot
YHy = v, | (23.8.12)
,Q"’ Hy = V-J (13.8,13)
LRI (13.8.14)

Byae (13.08012) Bvagh (12.08018) in (13.8.11) gtve
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It .2 o " | |
A° gl 0 i v 0
R I R (I N IR N B R R B
0 I v v,y 0 B
[ ]
From Eq. (13.0.16)
- ) C : )
iV (A" -s1)" 0 v 0
M + 1 Pl iV - r ‘
Lv. 3 | o Iz, Lo
o | ‘ (23.8.17)
From Eq. (13.8,17)
. 2 vi vy .
L (85 aa1)y 4 -4¢—|1 = 0 (13.8.18)
In particular, if ¢ is basic, then Eq. (13.8.18) becomes ‘
1+ v (A2 .51V - 0 (13.8,19)
vhere L 15 dropped from v,
Or, in scalar notation,
4 V2 "
1+ 51 _— + 32 — * eee *+ s;—:-a- = 0- (13.8.20)

vhere the V's '1n the numerators of Eq. (13.8.20) are the eleménts of ¥ in
Eq. (13.8.19).

To solve for the kth root g, in Eq. (13.8.20) we consider

ve Y v2
F = Lés—to & 2 4 PR (13.8.21)
Dl'z 52_2' [ XX 6:—-—-2. eV

We can now prove that a root of F lies batween 61: K] and bk. As Z approaches

By, frou above, F <= , ond as it approaches ak from below, F —w ,

PR e et e et e A A e
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Thorefore & root of ¥ must Lie betweon B, +] and 8+ To solve for any g lying

 between .b.!.‘;".l. ond 21‘. Ve may bogin by letting
X = - (13.8,22)
Yy = %n | o - (13.6.23)
z-’-!%l' | | N (15.8.25)'
i:r now Z in Eq, (13.8.21) glves P pooltlvg; z 1; too large un¢ ve take
Y - 2 |

If 2 in Eq. (13.0,21) had given F negative, Z would have been too small

and we would have taken
y « 2

and uoed Eqs (13.8.24) for a new Z, We continue in this manner until F in
Eq. (13.8.21) 1o sufficiently cloae to O,

We know, however, that

9 208 _ ~ {13.8.25)

Therefore we must find an upper bound to o This will {n general not be

greater than

Y = M M+ (13.8.26)

To solve for the H

i We have from Eq. (13.8.17)

vok = (b = Q"‘I)“ v . (13‘002()




_ 8

Uk = 8V,
-and
H » --‘--

X
[
| /Y Y

The proof for the left centored matrix from that of the undontared ma.tr_ix

follows similar lines,

13.8.2 Proof of Dasic Structw'e and Right Centering Ipsative from Normative

Dasic Structure Frotors

Lat R be the basic normative covariande or correlation matrix and p the

ipautiva covariance matrix so that
p = (-VV)R(I-VV)
where
ViV =1
Tat the banie atructirvo of R and p, respeciively, be
R = Q8 q
and
p = qagq
From Eqs; (13.8.30), (13.8.32), and (13.8.53)

qdq = (L-vV')Qdg (r-vv)

(13.8,28)

(13.8.29)

(13.8.30)

(13.8.31)
(13.8,32)
(13.8.33)

(131803“)
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' | Because cﬂ' Eq, (15.0.30)
Vqgao - ©(13.8,35)

q'd-(:-vv')qh Qq = 0 S (15-0.36) 

© From Eq, (15.8.56)
‘Q' Q‘d - (r-q'vvg)aa q - 0 : (13.8.57)
| Fra;u Bq, (15.8,37)
8@ q- qa-a'VV'QBq' q ~» 0 (13.8,38)

From Eq. (13.8.30)

o' q, - (8- a; vy Qs g q, = O (13.8.39)
From Eq, (13.8.39) |

(v''Q8) Q' q4 =(V 33) (8 -4 ? Q'FVV’ a8 q, =0
or |

v' q a? (® - a )t 55 ) V-1lao (13.8.40)

Fran Iq, (1}.8.’00) we solve for the dl as ln the case of the raw-normative

methoda. Having solved for the basic diagonal, we can solve for the Lasic »

orthonommal of p from Eq. (13.0.39). Ve have »

a, = Q-4 1) vg (13.8.h1)




ho

. shere [ 18 & normalizing scalar,
© Nowmative from ipsative basic structure factors,

Prom Eﬁu. (13.8.34) and (15.8.35.) ve have

dq' q-q Qs (I - Qv viQ) = 0 o (13.8.42)

From Edﬂ.‘(15.8.52) and (13.8,42)

d “'9.1 ~¢'Q,8 +a'RVV/Q, = 0 . (13.8.43) |

Qe +(a-8 1" RVVQ, =0 (13.8.44)

From B, (13.8.h4)

qq Q +qa-8 ) ¢ RV V Q.i = 0 | (13.8.h5)
It can be proved that

qq = X vV (13.8.46)
From Eqs. (13.8.45) and (13.8.10)

Q=vVv'a +aq(a-3 ) RV V Q, = 0 (13.8.47)
Promultiplylng Eq. (13.8.%¢) by V! R aiven, becnusr of kq. (13.8,32),

’ -yl '
v Q bi VRVVQi

] - < ' -
" .+v R q (a air)qnvv Q.l 0

or

V' Raq(d-3 ¢ RV+8, -V RV = 0 (13.8,13)

S NI
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If ve hnvn the veator R V we can solve s (13,0,48) for the ﬁ'l by

methods analogous to tbo pravious v.athodn aince we oan reuduy shov that
4 »>8

We ut{ll need an upper bound for d _", hawver. : ;
We can solve for the q, by vevriting Eq. (13, B.W) as

Q, = (V-q(d-bir)"dnv);,, | (13.8,50)

vhare & is a normalizing scalar,

1 28,28 S | | ) (11.8."9) |




CHAPTER 1
" CATTOORICAL VARIATIONG IN PACTOR ANALYOIS

In the provt'oun chapters we have fouﬁ'rdod data matrices as consisting
ooaentially of measures for a given nunber of entities on each of a dt':r‘er-: -
ent nunber of attributes, This type of data matrix has been the one most
commonly used in factor analytic studies, You recall, hovever, that in
ssvaral chapters ve indmtod that in sowe cases theiattr!.‘buvtel might have
& natural origin of measursment, 'For oxmﬁh, in the previous chapter ve
suggasted tbst the éntitin might be 'perionu pmctiéing typcwrtﬁng»and

, the‘lttributel might be succeassive tiﬁa 1hterv#ia.

1h.1 Multicategory Scfs'

We may, however, consider a acmovhatvmoro ganeral model, »For example,
suppose that we have a number of individuals for each of whom a numbsyr of
physiological and psychological variables wers measured on each of a number

~ of succeasive days or time intervals. For such a set of data we have three,

rather than two, categories to consider, In the conventional case we have

entities and attributes only. In this more general case we have entities,
attributes, and occasions. Lat us now consider posiibla‘uays of studying
data of this type. |

1%.1.,1 The Attribute-Entity Sets. In the case of the three category
set, we may consider a nunber of matrices of the conveptional type consist-

ing of attributes as columns and entities as rows. Each of these matrices

would have the same attirllmtes and entitics fur a number of different oce

casions., We may call these matrices slabs of the three category data matrix.
The problem of how to handle such a set of data by means of factor

analytic technique ia one which has not been thoroughly explored. Horat

(1953) has recently digscussed the general problem of multicategory seta of




- set of data in tarmo of what he calls a core matrix, which includes the -~ o

~ casion for each attribute as a distinct attribute, Thus we would regard an )

b3

data and propand several different ways of analyzing such sets, Tucker ,
(1963) also has considered the general problem of c’htttln, attrtbuui,
and ocoasions in what he calls the three mode factor analysis model, He '

has presented an l.ngontoui procedurs for concdving of & three category

dutcgoriu of entities, atfributn; snd occasions. The w_othod assumes
lower orders for each of these categories than are repréiontad in the data : ‘ |
matrix and the problem then is to solve for this lower order three category - ’
matrix as & basis for réprcducins the observed three éu.togory daﬁ matrix. o

wa muy‘conildar a limﬁlor way of handling data of this type as a two
category set. Here the onalysis of the dutﬁ vould be anenﬁblc to the tech-
hiqpha which we have discussed in the prsvious cﬁaptars. |

The first of these ways of considering the data is to regard each oc- | o

@ttribute measured toda& for a group of entities as different frcam the some
attflbute moasured tomorrow on the same entities, For example, the variable
of typewriting speed on Monday for irdividual A and ﬁhe variable of type-
vriting speed on Tuesday for the aﬁme individual would be regarded as two
different variables. We would then consider a supermatrix in which the en-
tity-attribute slabs would be strung out in such a way that, if we had h‘
occasions and 10 attributes, the supermatrix would actually have 10 x &4,

or 40, attributes, We would therefore have a WQ.variable matrix, We may
then consider a factor analysis of such a matrix along the lines outlined
in the previous chapters, This could be solved for pri‘ncipal axis fuctor

loadings for each variable or attribute on each occaston.
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' Mothor way of reaurding the same set of data would be to constder uéh
oceaslon as & differert sat of entities, This would mean that the ;}auon
vhose typowri;ins spead is rooordod‘ today will be conbnktdorod a _dlrronnt vp&r-'
son when his spocd L8 recorded tomorrow, even though ho has the same name
and 1s identifiable as the came {ndividual, If ve look at the problem in
this m, we could thon string out the entity-attribute slabs for the vdﬂ.-
ous occasiona 8o that, if ve had, say, 20 persons and & occasions, we would
actually noﬁ have 80 different parsons since we regard each individual as a
different perdon on cach of the 4 aifferent occulbo‘nl. This would .give us
a supemﬁrix, or a column type 3 supervector, in vhich each of the utrlc
-elements {0 on ontity-nttrlbutc matrix for a upoc!.ne- occasion, Here ve
vould have 80 ontitias and 10 sttributes. We can nov, on & matrix of this
type, do a factor analysis according to procedures described in previous |
chaptefa. Such an analysis could then yicld a sat of factor scores for
each person on each of the 4 different occasions., It would also yield a
set of factor loadings for each of the 10 variables,

It will be scen that the firat and the second ways of setting up the
matrices of data in the form of type 3 bupervectors yleld essentially dif-
ferent results, In the firat case we get a factor score matrix for the 20
entities and we get factor loading ratrices for the 10 attributes on each
of 4 different occasions. In the second case we get a factor score matrix
for the entities on each of the i different occasions and a factor loading
matrix for the 10 attributes. In the one case we regard the occasions as
different variables, and in the second we regnard them as different entities.

14.1.2 The Attribute-Occasion Set, In the previous example we have

considered the decomposition of the data cube, as it were, into occasion
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slabs nuoh»that’oaoh slab had entities for rows and attrtbutcl for oolumns,

We may now conaider n‘dit:aront decomposition of this three diﬁbnilonnl

_ matrix auah’ihat each slab represents a person, [Iach poruon’mjtrtx may be

regarded as consisting of occasion rovs and atfributi cdluman We would

~ thon have, using the pravious example, twenty 4 x 10 matrices,

We now have two obvious alternatives of treating these slabs of dlis.

In the‘tlrat of thess, we could string out the slads into a rowv type 2

-supervector so that each person is roaﬁrdod as a different attribute, There-

fore we would have a supermatrix of 4 occasions and 10 x 20, or 200, attri-
butes, On such a matrix one could then perform a factor unslyill.

On the other hand, wo may string the matrices in the other direction,
so that each person is considered os a different cacasion. We wculd'thoro-
fore have a matrix with 80 rows and 10 columns, We recognize at once that
this arrangoment of the data is theboame as the second way of arranging it
in the previous method, except that there has been an interchange of rows.
In both methods the columns are the 10 attributes, but the entities for a
single occasion are grouped together in rows, Ii the second case we have
the same 10 attributes, but the occasion rows are 3rouped for a specific
entity. We see, therefore, that we actually ha?e, 80 far, three different
vays of arranging the data into a row by column data matrix which can be
factor analyzed by avallable methods,

14.1.3 The Entity-Occasion Pair or Set. Let us now see what happens
if we take the third remaining possibility of decomposing the data. In the
first case we took slabs such that each slab was a different occasion. In
the second cage we took alabs such that each slab was a different person or

entity, and in the third case we take slabs from the cube so that each slab

o Aot b 58
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18 & different attribute, ; |

In this latter oase, each slab may be rewddd as having entities for
rows and occanions i'or golunns, Ouppose we string these slabs out into o |
rovw uuporvootdr'lo that the 20 entities constitute the rows, aud the cole
umns are cets of ocdaniom for ocach of the successive attributes. We recog-
nize af once that'thio is the first arranmnt considered in the attribute-
entity slabs, except that cocasions are grouped by attributu, vhile in the
firat case attributes wﬁra grouped by successive occali.onl;

Obviously fhen, since a data matrix of this type has simply undergone
a right hﬁnd pormutation of the former type of dutu‘mitrix, the factor analy-
sis results would be the sume except for the permutation ot columns’ in the
data matrix and the corresponding permutation of rows in the factor loading
matrix, | ‘

Let us see now what happens if we string these entity-occasion slabs
in a vertical manneé so that in the colunn supervector we have occasions
for columnns, and the rows consiast of entities grouped by succaoa;vo attri-
butes, We see that this gives the same result as when the attribute-occasion
set is arranged in the vertical supermatrix, except that now the subtmatrices
exhibit grouping of entities according to successive attributes rather than
grouping of attributes according to successive entities. It is therefore
clear that nothing new has been added by reordering of the data into entity
by occasion slabs, The factor analysis of such an ordering of thé data
would Le the same as for the second case involving the attribute-occasion
set. - , »

14,14 Additional Categories, In the previous section we have con-

sidered what may be regarded as the most obvious categories in seta of data
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to be obtalned in real life situations, These are cortatnly {mportant, and

it is probable that a grest deal more attention vwill be given to the three
category type of data matrix and to efficient methods of reprodusing such a
set of obqorved data vith a smaller nunber of parameters, This would cone

' lﬂtuu 8 ganiruuution of the lower rank npproximatlon to data matrices bt
the two category type. However, it is alresdy becoming clear that even the
three category type o: data matrix will not cover all maantngtul dstogorioc
encountered in 1mportan£ psychological research,

'Lct us consider a specific ixnmpla. Suppose ve have a questionnaire
vith a set of 64 items to which 18 individuals vill respond. lLet us assuve
that these entities or individuals are requested to give responses under a
number of different conditions or instructions. For exampls, they may be

asked to respond to the items as they apply to themselves, to the aversge
person, to the 1dealbperaon, to the reapondént as he would like to be, etc,

One may have as many different conditions as he can invent,
Suppose the

It

Let us assume that thore are eight of these conditions,
respondents are a group of psychiatric residents in a mental hospital,
may be expected that these residents are undergoing training and experience

which will modify their responses to the items over a perlod of time for

the varying conditions, Suppose, then, that these individuals are requested

to repeat the 8 sets of responses to each of the 64 items on 4 different oc-
casions at six month intervals,
Lat us now review the essential characteristics of this data model.

First ve have sets of matrices involving 18 entities and 64 attributes or

variables, For each condition on each occasion we have such a matrix. For

example, if we have 8 conditions and & occasions, this means that we have 32

matrices of order 18 x 6h,

[N
W ik M it
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We may also abﬁootvo of an udditioml‘catcgortoal set which would cone

18t of & set of {nstruments or ovaluatora; ~This would involve ) hu:hbcr of
different vays of evaluating or mauuuﬁ.nd each n‘ttrt-buto for each entity
under oach condition and on each cacasion, It s intorosting to ndtp that
the instrument and the occasion categories are the bastic concopti'_imlvod
in tuditional. theorics or: reliability of measures, The instrumenta corres-
pbnd to cémpsnblo form or ccmparable measure nllabil.tfy, and thcvoccuiono
correspond to conaistency or stability over time,
~In most of the measurcuwont models, comparable form reliability usually
involves only two instrumenta, 'I’hanc inatruments may be peéaom, test boék-
lets, hardware, or what not, For example, we may have a number of dlmhnt
raters evaluating the same individual on the same attribute for a given oc-
casion, In the case of the occasion category, vwe have a apeciai case of re-
tost rciiability which ordinarily involves only two occasions, The problem
‘of evaluating change, for oxample, beccmes sufficiently complicated from the
model point of vdew aven if we have only the four categories of entitlai,
attributes, conditions, and occasions. It bacomes even more complex if we
include also the additional category of 1natr\megits. In any case, it is
reasonable to assume that a general data model which is completely satisfac-
tory should be prepared to handle at leas’t a five category matrix,

Even though we cannot present a complete ana.lysia of the more general
problem, it m:iy be worthwhile to examine .‘tl;he possibilities of arrnngementa
for multicategory sets of data in two dimenaional arrays which would be
amenable to the conventional methods of factor.analysis. '

First vwe may summarize the poaaibﬂitiea with three category sets, ye

s i o

- e et
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indicate these by A, B, and C, respectively,
| (a), (8,0)
(8), (A0)
(), (a,B)
ns.’ LTS 13 1
We see in Fig, 14.1,1 hov we may arrange this set of data into three
- d@fmrénﬁ kinds of two dimensional sets, The first set would have the A
k cdtegory for rows and the Band ¢ catcgoriuvror columns, The next set
would hd.v_o the B catogory tbr rows and the A and C categories for columns,

The third set would have the C category for rows and the A and B categories

for columns, A review of the previous subsection will show that this con-

stitutes the three independent ways in vhich the data can be ordered in
tems of two dimensional arrays, Any other arrangement wouid constitute
rcpot!.ti.onl of these, except for transposition or permutation of the matri-
ces, Obviouﬁly, such operations on a matrix would not affect its basic

structure, except for transposition of the basic orthonormals or pdmuta-

tion of rows and columns,
Suppose now we have four sets of categories such as entities, attributes,

occasions, and conditions, which we designate A, B, C, and D, respectively,
Fig. 14.1.2 indicates the ways in which these four categories can be arranged

in two dimensional array matrices,




0

(A), (p,0,D)
(»), (A,O,D) )
(¢), (a,3,0)
(0), (a,8,)
(AJB)I (c’D)
(7€), (B,D)
(a,0), (3,)

Flge .1.2

It wvill be noted that ’1_-'1}3. 14,1.2 18 divided into two parts, The first
part 1nd1éateo thoaqkarrangcmonta involving only one categorical aet as roﬁl
and three catogorical sets aa columns, The second part of the figure shows
how the two.dimonslonal subnatrices may be arranged 1hto sets so that the
rovs will consist of two of the categories and the colunns of the‘other two
categories, |

Note that in the first part of the figure the first arrangemont has
the members of the A category for rows and the B,C,and D categories for col-
umns, The particular ﬁrrangement or permutations of the B, C, and D cate-
gofioa is irrelevant, It must be remembered that the notation used here
dces not mean that first, all of the B category columns are given, then all
of the C categories, and finally the D categories, There would presumably
be same hierarchical order of groupings and nubgroupinga, but these are ir-
relavant since these various hierarchical arrangements can be produced by'
permutations of columns,

The second arrangement has the members of the B categories for rows,

-and members of the A, C, and D categories, respectively, for columns, Here
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'Vantn the order of A, C, and D are irvelevant as far as o fmtov mvlyﬂo
_-solution h concerned, The third arrangement has the ¢ catogory for yovs '

: and the A, B, and D categories for columns, Finally, the fourth crungﬁ

m'ont'hu”'tho D category for rovs and the A, B, and O categories for columns, -

Next we considor the second part of Fig. 14,1,2 in which ve have tvo
categories for rovs and fwo clusorhl for columns, Hore we see in the |
' nm rov that the A'u\d B categories are used rbr rows and the ¢ and D
‘cyatogori'u for coluninl. Aatu.n,. the ordering of the mﬁcn_or the Aand B
categories is irrelevant, since they may be pernutaed At, vill by a left hand
permutation mutxf!.x. The second arrangement has the A and C gbtogoriol for
rowi and the B and D categories for columna, The last arrangement in th.
sccond part of Fig. 14,1,2 has the A and D categories for rows and the B
and C categories for columns, |

It can be seen that no other arrangements exiat involving two categor-
ies for rows and two for columns, which are not either tnanspoaitionl or
: permutatidns of the matrices indicated in the lower part of Fig, 14.1.2.
Any other combination of two categories, not involving A, which might be
used for rows would Actunlly constitute a transposition of those already
indicated, For exunple, if B and C were used for réwa, then A and D would
be used for columns, and one would have the tranaspose of the third case in
the second part of Fig, 1h,1.2,

We see now that there are actually seven different vays, not involving
transpositions or permutations, in which the four category data model can be
arranged into 2 x 2 arrays; Any of these may have'a conventional factor
analysis performed upon it so as to get a basic structure solution or some

other approximation or transformation of a basic structure solution. Any

I s Sl s ke el ettt
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of thqio arrangements admit of a lower rank approximation lolutian{

One relevant and interesting question is which of these urahmﬁts
1s best from the point of view of provtdihgﬂ the most paraimonious approxi-
mation to the dats. It should be noted, for example, that if we have only
three occasions, and e let this be indicated by D, the last arrangement in
the first part of Fig. 14.1,2 has only three rovs. A lover rank approxima=
~ tion to this matrix vco'uld obviously not be greater than tvo,
 One criterion which could be useful in deciding vhat arrangement vould
give the greatest possibility for paéaimontoua /ducr!.‘puon 6! the data vould
be to conaider which combination of all possible seven indicated in Fig.
-1!;‘.1’.‘2 would résuit in a tvo array matrix such ihut its smaller dimension
would be a maximum, Let us take, for example, the illustration used in the
prwiéus section in which we had 18 persons, G4 attributes, 8 coﬁditicm,

and 3 occasions, Suppose we designate these as categories A, B, C, and D,

respectively. Obviously, the arrangement here vhose smallest dimension is
a maximum would be A and C as rows and B and D as columns, Then the smaller
dimension would be 8 x 18 or 1ik. This, however, is only one consideration
An deciding what arrangement to use, and the problem of interpreting the re-
sulta still remains. ) -

Let us now see what happens if we have five categorical sets, say, A,
B, C, D, and E. These may in particular be the sats of entities, attributen,
conditions, evaluations, and occasions discuosed in the previous example,
Since there are five categorical sets, these can obviously be arranged so

that one of the dimensions includes one set, and the other dimension 1nc1udea

the remaining four, as indicated in Fig. 14.1.3.
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(), (8,6,0,8)
(3), (A,0,0,E)
(c), (AB,D,E)
(0), (A,B,C,E)
(), (A,B,¢,0)

F!.g. 1".103

Here again, ve can without loss of genserality take the rov dimension as the

one having a single category. The data can also be arranged so that one di-

mension has two sets and the other has three sets, as in Fig. 14,14, It Ls
irrelevant which dimension has the three cntcgbrin and which has the two,
so that without loss of generality we may take the row dimenaion as having
the two categories, ‘

We may now examilue in greater detail the case of the one category row
arrangement in Fig. 14.1.3. We take each of the categories in turn as the
rov dimension and the other four as the column dhnenalom‘ér the two array
matrix. Again, it must be remembered that the sequence of the symbols in
parentheses 1s not relevant, that only the ombol.a themselves are important.
One may have any hierarchical order desired, To adopt a convention, one may
assume that the hierarchical order progresses from left to right so that the
E category is the final or top hierarchy for the firast four arrangements in
Fig. 14,1,3. This implies a number of sutmatrices, each of which may be a
supematrix, such that each successive submatrix corresponds to each succes-
sive member of the E category.

fet us now examine the two category by three category, two dim nsional

array matrix arrangements indicated by Fig. 1h.1.4,




P

(A,D), (0,D,E)
{a,0), (B,0,E)
(M), (8,0,8)
(A,B), (B,0,D)

(3,C), (4,0,E)
(8,0), (a,0,E)
(3,8), (A,c,D)

(c,0), (A,B,E)
(ctz)l (A'B!D)

(0,E), (A,B,C)
Fig. ..k

Wa can very simply set forth the rules for specifying the various arrange-
ments by noting that the dimension having two catsgories can be made up by
coxiaidering all possi.ble different pairs of the two categories. This will
obviously be 10, as indicated in the figure, because this is the number of
five things taken two ﬁt a time, The column categories will, of course, be
the three categories not represented in the row,

We now have the general problem of deciding which of these arrangements
would be best for analyzing the data of three or more categorical sets in
terms of a two dimensional array matrix amenable to thé factor analytic teche

niques set forth in earlier chapters, It would doubtless be of intereat to

investigate the properties and to attempt interpretations of the various ways
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1n which the data can be laid out in & two dinensional nateix, It 1s probable
ﬂut iihﬁluyins or unifying relationships among these various methods may be
uﬁbu_ﬂhodo o | ' o o
1,2 (for'mﬂauﬂobs of Origin
In the previous chapter ve have given attention to the problem of ori.gtn.
of messurements and bave discuseed in part the problem of scale, We have
seen hov th§ basic structure of a matrix varies as we perform either l right
oé 8 hﬁ centsring operation, We shall now consider the relationship 'or
' zh@ wetric problem to the multicategory data model which wo have just dise
cussed, -
In general, any of the data arrangements considersd in Fig. 14.1,1,
14,1,2, 14.1.3, and 14,1.4 must face the problem of metric. Whether we
should have raw score measures, deviat!.on ‘meuuru, or standard deviation
maburea, and to vhat extent these separate considerations apply to sub-
matrices within the set, must b;'dccidad. Ordinarily, if we have a three
category entity-attribute-occasion matrix, we may assume that the difference
in varisnce and mean for a given attribute over a glven numbsr of individuals
from one occasion to the next would be of interest in the analysis of the
data. Considering, therefore, the entity-attribute matrix for each occasion
alub, we would not standardize the measures by columns, Such ¢perations
would obviousiy lose information as to relative chnnges or variations over
time for the entities with respect to each of these attritutes,
If we take the second arrangement in Fig, 1k.1,1, in which B is the
attribute category and A and C are, respectively, entities nndboccaaiana,
we might well take standard dev;gtion measures \(th respect to the attributes,

since thase could be a nunber of different kinds of things which were not

ot st e e i . s,

I e
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 measured {n comparable units orvt":r'om comparable origins, If the centering
and -cslthg vere Aom over ali occcasions for all the entities, we could léo
5ow relative means and Qnrtunool fluctuated for a single attiibuto over the
vnvl@hﬁbcondtttonu., | ‘ |

It may be that the problem of metric with respect té pulticategory data
nateices may best be resolved by considering thbld arrangsments vhlcﬁ involvo
‘only attributes ang svaluators as the rov categories, For thblo arrangements
one would standardize by rows, This would allow differences in origins and
vuélandei to show up vith respect to changing condltton- and occalioni, ah¢ ‘
would suppress the dit!hfencol due to the arbitrary metric genafolly charac=
teristic of attributes and evalustors. Once the data have been standardized
for these arrangements, they can be rearranged according to other patterns
1nd1catcd in Figs. 1h.1,1 ﬁhrough 14,1.%,

14,3 Computational Considerations

Once of the problems which frequently arises and uhich has led to a
great deal of confusion is that of determining under what conditions it is
desirable to factor intltiel, and under vwhat conditions attributcn.

Suppose we have a two category array, irrespective of what the cafe-
gories might be, Thej mléht be entities and attributes, as in the convention-
al case; they might be entities and occasions; or they might be attribures
and occaaibns, as in the case of the single individual who now repreaents
‘a complete population or universe. With any o these two dimensional matri-
ces ve mﬁy get either a major or a minor product mcment matrix after apply-
ing some appropriate operations to achieve a specified metric. This may
consiat of either right or left centering or both; or it may also inolude

scaling the members of a category, whether they are entitiés, attridbutes, or

O R R TSR
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cobdtuonl, by means of multiplication by ‘u diagonal mstitx on either the

| right ov lett or both,

It is certainly true that the basia struoture of such matrioces vill be
 very much a function of tho kinds of scaling and origin relocating opera-

tions that have been performed upon it, However, ,“ does not seem to be
generally recognized that, for any givon' set of metriciting operationse.
that is, for any given set of operations by which we apply additive and

scaling constants to rovs or columns or both, it does not matter vhether
ve mctor‘om set of categories or the bthor. :r,‘ for example, we have &
data matrix which we standardize by persons or by columnl‘, let us say, we

may get the minor product mcment of this normalired data matrix and perform

a basic structure analysis on it. 7This will give 'un a racto;' loading matrix

by means of which we can solve for a principal axis or basic structure factor

score matrix as indicated in Chapter L.

On the othcr hand, we can get a mnaor product moment of this matrix
and perform a basic structure analysis on it, The basic atructm mnlylh
will give us precisely the factor score matrix that we obtained previously
by getting first the factor lcading matrix and then solving for the factor
score matri#.

Furthermore, if we use this factor iacorﬁ matrix we can then postmulti-
ply the transpose of the standard score matrix by the factor score matrix,
and this will yield tﬁe factor loading matrix which we obtained directly
from the previous method by operating on a minor product moment of the
standardized score matrix. It can readily be seen from the definition of
the basic structure that this must be the case, because if we premultiply

a matrix by the transpose of its left orthonormal, we must by definition
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have the right orthonomal premultiplied by the basic dhicml.. Convorloly,
if ve premultiply the tﬁmpon of such '|  date matrix by its right ortho-
normal and then premultiply again by the inverse of ite basic disgoral, we
‘must get the left orthonormal, | o v -
It must be pointed out, hovever, that these reciprocal rl‘lltlkonlhtpl’

hold only if the basic structure analysis is pcrroéuid without altering tbo
dluami elements of the product mcment matrix, whether this is major or
minor, The communalities issue is very much a part of this problem, It _
should be emphasized that the definition of ccemunalities has not been mede
sufficiently mthmuticd 80 that one can specify the nhttonthp involved
l.nv,thyon nc!procd types of solutions if ccmmunalities rather than unity
are used in the diagonals of thﬁ correlation matrix. The various methods of
approximating the communalities will influence the kinds of relationships ob-
talned, Since any math.matical formulation of the comuml Lty model is ex-
tremely complex, invo;ving complicated nonlinear relationships, we must con-
clude that the ltudiil vhich have been done to compare the fenultl of so-
called obverse factor anhlyain with the conventional methods are not meaning-
ful.

As a matter of fact, it is only for the basic structure solution that
we can express precisely thia reciprocal type of relationship. From a theo-
retical point of view therefore, much of the discusaion about the factoring
of people versus factoring of tests, or the obverse types of factor analysis,
is irrelevant, However, there are scme practical implications involved in
deciding vhether one does a direct factor analysis on the major product mom-

ent or on the standardized data matrix.

If, for example, one has many mors attributes than entities, what we
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have 6onvohﬂomuy called the minor product moment of this daﬁ matrix 19
naturally larger than vhat ve have called the major product moment, This is
Slear lf ve Eomd the natural order of the dats matrix as having rovs for
entities and attributes for columns, We donm tho‘utpor product mopent as

the natural order premultiplied by its transpose, and the major product mome

oent as the m_tuni order postmultiplied by its transposs, Then the order of

the minor product mement will be the nunber of attributes and the order of
the major product mcment the nun‘ooi of entities. | |

Iz, ré; example, we have givén & persopality Lmhtory of, say, 250
1items to a group of 100 persons, and ve vish to have a factor enalysis of
the individual items in the inventory, the conventicnal precedure would be
to get the intercorrelations okf these items and to do a factor analysis by
one of the methods outlined in provioui chapters, This, of course, would be
& 250 x 250 matrix. This is a large matrix for any of the methods. | Its

analysis would be prohibitive with desk calculators and quite expensive vif,h

electronic ccmputers, On the other hnnd, if we take the product of the data
matrix pontmultipihd by its transpose, we have a 100th order matrix which
can be factor unnlyzed in perhaps one fifth of the time it tukes to factor
analyze one vhich has an order of 250. '

We ghall see, tharefore, hov we may proceed computationally with a data
matrix having many more variables than entities., We shall assume that the
matrix 18 normalized by columns so that we have means of O and standard de-
viations of unity., If wa took the product of this matrix premultiplied by
its transpose, and then divided by the number of cases, ve would have pre=

cigely the intercorrelation matrix of the itema,
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On the other hand, if e teok the produst of the standardised data
matrix poltmuntpnod by {ts tunlpou, ve would not havo [ corrohtton mtrtx.
Novorthclon, from such a produat we may derive a ractor loading matrix by one

of the basic struoture or prinsipal axis methods, This proccdun ve shall

indicate in the next seation,
14,4 Obverse Factor Soluticn with Standard Metric
14.4,1 Computational Equations
1hel.la Definition of Notation
X is the N x n matrix of rav measures,
M 15 the vector of means,
Ds is the ¢1nsona1 matrix of variances,
@ is tho major product moment of the standard score matrix.

P is the N x m matrix of factor scores,

Q b* is the n x m matrix of factor loadings.

1k.4,1b The Equations

- (1b.b.4)

|

(2)! h

noe 2 (14.4.2) ;
2 2 |
B o om-mg , C(1hb03) 1
i

|

a = p2 ‘
|
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',,U . o . o : o (1ha49)
EERT o | . (1&».#.»6)
a = UM | S O (hbT)
Woe v-ial. | | | - o (14,4,8)
YooK mas
o” -y Xy, = Wy = ¥y | | | ;(n.y.m)
G » P8P | S (ba2)
a = at(xp) | (14.4.12)

14.4,2 Computational Instructions. We begin with the raw score data
matrix, Although the factor loading matrix which we ahally proceed to solve
for is precisely the sume as the solution we would get from the correlation
matrix, we never actually calculate the standardized score matrix.

First we calculate the means of the variables as indicated in Eq.
(14,4,1)s Here we simply get a colunn vector of the column sums of the raw
score matrix X, divided by N, the number of cases,

‘ Next we calculate a vector each element of which ia the sum of the
squares of the elementa of the correaponding colunn of X divided by N, This
1s the p vector, as tndicated in Eq. (1k.4.2).




We then calculate the _ol.mnh of the aidoml matrix, as shown tn Eq,
(14,4,3)s This is obtained by construoting s dlagonal matrix of the clmrit;
caloulated in the vestor of Eq. (lh.4:2), and subtracting from it e diagonal

" matrix consisting of the squares of the elements caloulated in Eq, (1b.4,1).

It can readily be shown that this is a diagonal matrix whose diagonal ele-
ments ara the vartances of the vmibho in the rav ecore data matrix X.
Next we _inucati the elements in a diagonel matrix by Eq. (Lh.b.b),
Here ve tske the inverse of the dlagonal matrix on the lyottl of Eq. '(1&.'&.5)‘.
'm next pimnuluply the column vector caloulated in Eq; ‘( 1k, 4,1) byth.
diagonal matrix caloulated in Eqe (1h.h.5) to got the vectorg indicated in
Eqe (1h.4.5). ‘
Now we get a vestor V, as indicated in Bq, (14.,4.6), This is the raw
score data matrix postmultiplied by the vector U calculated in Eq. (14.4.5).
We then calculate a scalar quantity ¢, as indicated in Eq, (14.b.7).
This is the minor product mcment of the vectors calculated in Eqs. (14.4.1)
and (14.4.5). .
Next we calculate the vector W as in Eq. {14.4,8). This is obtainad by
subtracting frem each element of V calculated in Eq. (14,4.6) one hslf‘the

scalar @ calculated in Eq. (1h.4.7),

3
This vector is cbtained by postmultiplying the kth row of the X raw data

Next we calculate a vector Y, beginning with k = 1, as in Eq. (14.4.9).

matrix by the diagonal matrix calculated in Eq. (1b.h.b),

This vector i3 then used to tolve in turn for the elements of a matrix
@, which is the major product moment of the raw score matrix. As we recall,
in this case it 18 émaller than the minor product moment., Eq. (14.4.10)

shows how we calculate the elements for the kth row and the jth column. The
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A veator calaulated tn Eqs (14.4s9) L6 postmultiplied by the jth rov of

~ the X matrix in column form, and frcm this minor product arve subtraoted the
kth and the jth slementa of tha W veator of Eq, (l4,4,8), It 18 not neces-
sary to caloulate the scalar quantities of Eq. V(J.h.h.lo) for all values of
4 Wo need culoulate ‘them only for values of j equal to or greater than k.
This gives us the olmontu' in and above tho‘ dia’gonal of the § matrix mdi-

~cated in Eq. (14,4,11), ,

Eq, (14ok,11) shows the major product moment of the ltundnrdizod score
matrix ai a function of the basic d!.ugom.i and basic orthonormals, To this
| matrix we now nppiy one of fha prinoipal axis solutions indicated in pre-
vious chapters, This may be carriod to any numbof of factors desired, ac-
cording to how much of the variance ve want to account for, or what other
criteria we may have for stopping the faatoring,

Tho factor loading matrix a is indieated in Eqe (1h.4,12), Here we
see on the right hand side that firat we postmultiply the transpose of the
raw score matrix by the P matrix calculnted frem Eq. (lhk.b4,11). This, it
should be recognized, is precisely the principal axis fnctor score matrix
for the normalized score matrix, That is, Eq. (1b.4.11) gives us the pro-
duct mement matrix we would have obtained if we had normalized the X matrix
tirst by columns and then postmultiplied this normalized matrix by its trans-
pose.

The next step in the calculation of the a matrix, as indicated in Eq.
(14.4,12), 13 to premultiply the product in parentheses by the square root
of the diagonal matrix calculated in Eqe (1h4.4.4),

It should be observed that the major saving in computations ias achieved

when the number of variables is much larger than the number of attributes,
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~Actually, as can be seen, the steps involved in Eqe. (14.4,1) through (14,4,10)

are not, in general, more 'labori.oul‘thnn the calaulation of the correlation
" matrix in which the minor produat mement of the standard score matrix is ine
volved, There is, hovever, an additional multiplication 1ndiaut§d in Eq,
(14.4,12) in which the factor score matrix is postmultiplied into the transe
‘pose of the rav score data matrix, The computations for this opo'nf.ion ordin-
arily would not be great ccmpared with the iterative procedures 1nvolv§d in
the solution for the basic orthonormal and the basic dlagonals of & very
large corrslation matrix, ‘ .
ih,h,3 Morlcal Exampls., We illustrate the method with the same d#ta
motrix uced in Chapter 12, even though it is a vertical matrix, so that we
may compare the results with those cbtained in Chapter 12, Section 4. |

Table l4,4,1 gives the major product moment of the standardized data
matrix. The number 108,0 at the lower left of the table is the sum of the
diagonal claménta. This should be equal to the product of the orders of
the matrix. This i8 12 x 9 = 108 and serves as a check on the computationn,

Table 1k.4,2 gives the normalized factor score matrix for the first
three factors, The rows of this table are proportional to the columns of
Table 12,4.,2, The proportionality factor is, N or 12,

The first row of Table 14.4.3 gives the first three basic diagonals of
the correlation matrix corresponding to the data matrix. These results may
be geen to agree closely with those of basic atructure solutions for the
some cérrelnfion matrix in previous chapters., The second row gives the
number of iterations for each factor. The body of the table gives the first
three principal axia factor loading vectors, These also agree closely with

those solved for in previocus chapters,

e,
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b ,Msthamqtioul Proof

We give bolow the proof that the computational outline sbove does yield
tho‘oonventlonal solution for the principal axis factor loading matrix given

in prcvibdlichﬁptorlav

GLven the raw score matrix X, let

M e ’-‘-'Ni | - ‘(llo.s.l)b
, , - |
B ’-‘(—2}& , ' (14,5.2)

B2 . D, - T | (1445.3)

2.0 | | (16.5.4)

z = i: I- ’1-1-'-3)( at | o (14.5.5)
Fram Eq (14.5.5) | |

ez -{r-%’}xax’[r-iﬁy} O (s6)

Frem Eq. (1&05'6)

4 ’ ] ' [ ! t
22 =« xax' -3 g ax' _X dg% 11 11 xax' 11
(14.5.7)
From Eqse (14.5.1) and (14.5.7)

t2' = XAaX' ~1M ax! «xaM2 +1 M aMY (1h.5.8)

o e e - .
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aubatituting Eq. (14¢5,9) in Bq, (14,5,8)

2 » XaX S1U X XUL +1U ML

Lat -

V =« XU

}

a = UM
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From Eq. (14.5.11) in Eq. (1&.5.10)

e = XaAX -1V -vVY +a11

Let

WaevVedal

From Eq, (1%4,5.13) in Eq. (1%,5.12)

z2' = XaAX -1 W w2

Let

G-zz’

From Eqs. (14.5.1%) and (14.5.15)

- X!
(}1J X, ax

Je

=W

i

.WJ

(14.449)

(14.5.10)

- (14.5.11)

(14,5,12)

(14,5.,13)

(14.5.1%)

(14,5.15)

(14.5.16)
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Otven the basio structure forms
o»‘g POP
L = Pb* Q
,ﬁcm Eqs. (14,5,5) and (14,5.18)

ot p . Jx'f:-liw

- Prom Bq (W.5.19)
| qsf . atyprp.x 1w P
From Eq. (1&.5;19)
Pl a=o
| From Eq. (14,5.21) in Eq. (14.5.20)

Q 5* - di (x’ p)

(1u;s,x7)'*

(1445,18)
(1b.5.19)

(14,5.20)

(15-502;)

(14.5.22)
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CHAPTFR 15
THE PRORLEM OF OCALING

~ In Chapter 13 ve considered the problem of srigin or zere point as {t
ittoctl factor analytic solutions, We sav th;nt ve may vork with rav score
,mtﬂcu, thtién score matrices, or a number of cmblnnuom of these two
methods, l We loarned that we may factor ﬂ,ght centered and left centered
matrices or both--that i3, matrices whlc.hv hvo means lubtraétod from the cole
'ﬁnnl, those which have means subtracted from the rows, and those which have

means uubtractéd frum boih‘rowa and célumnu. ’ |
We saw alsc that we may cenduct factor analytie loluthns bnsod on proe- *
cedures which may subtract or add constants other than means to the rovs gnd/
or colusns, and that these solutions vhry according to the specific patterns
for adding constants to rows or columns, We indicated that thers may be
rational procedures for determining what constants should be added, as in
cnses where natural zero polnts are avallable, We showed in Chapters 4 and
13 that the unit for scaling one attribute may not be ccmparéble to that for

scaling another, and that therefore rationales for making such scales compar-

abla may be of interest,
15.1 Kinds of Scaling
It ia clear that If we have a large set of measures, such as physiologi-~-
eal, psychological, or other types, these may vary widely in comparability,
For example, height may be measured in feet and a test score may be measured
inrterms of items correct on a 500-item test, v
The conveﬁtionnl procedure, as indicated, hac heen to reduce all these

to standard deviation measures, We have in genersl three types of poasibilie

ties for scaling, We may scale by entities, by attributes, or by both., 1In
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any case 1t 18 well known that a particular factor analytic selution will dee
pend on the ;clung procldui-; This is becauss the basic structure of l dat.n“ ‘
~ matrix is altered in & very complicated fashion if the data matrix is multie

" plied by & diagonal matrix,

15.1.1 3caling by Attributes, We have already considered in scme detail
the reasons why the problem of scaling by attributes arises, This, ef course,
means that we postmultiply a data matrix by s diagonal matrix. In the case

_of a scaling procedure which reduces all variables to unit standard devi-
ations, ve simply postmultiply the data matrix by the inverse of a diagonal

matrix whose elements are standard deviations of the variables in vhatever

_units they are measured, This has been the traditional method of scaling

for factor analytic solutions,

It should be noted, howsver, that such a scaling procedure is specific
to the particular laﬁplo to which it is applied. If one used such a scaling
procedure on a particular sansple and applied the same diagonal scaling matrix
to a data matrix obtained from scme other sample, he would not expect that |
that variances for the new sample would be unity, In general these would
'deparﬁ from unity to a greater or lesser degree, The fact that the normallz-
ing scaling procedureytb specific to a‘particular sample caats doubts en itn
valldity.

15,1.2 Scaling by Entities. The problem of ‘acaung by entities has
not received much attention, or perhaps even been regarded as a relevant

problem in factor analysis procedwres, Certainly the question of origin by

" entities is of both theoretical and practioal importance in the analysis of

behavioral science data, We have seen how it arises ii. the case of ipsative

type measures in personality scales, It also arises in the case differential

e . " . : . e
. e s e o .
et S g g
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pfodtot!.on problems, This we have discussed in dhaptor 13, »Obv!.buoly, the
shifting of origins by entities or rovs of the natural order data matrix has
its dhaloi. in sosling by_onuitu. This Lmyuu formally, of course, & multi~
plication on the left of the natural order data matrix Sy s diagonal bttux.
The qﬁution of vhat sort of dingomi matrix is appropriate for a gﬁon probe
lem depends on the particular interest of the investigator, ‘
One may assume, for oxample, that certain of the entities should receive
less weight than others in a factor analytic solution, kIt may be that because
of biased sample selection it mighf be duh-abla to veight certain of the en-

- titles more and others less, to overcome tb.i effects of bias. For example, if
one had selected a group of individuals so that in geheral the higher scoring
individuals were believed to be less well represented, compared to scme target
population, than those in the lower group, then the former might be given
higher weightings, Therefore the diagonal elements of the left scaling matrix
would be larger for the higher group than for the lower, |
© 15.1.3 Scaling by Entries and Attributes. It is nov obvious that a

 more general view of the scaling problem for a data matrix would involve scal-

ing by both entities and attributes, Here the formal model includes both pre-

“and postmultiplication of the data matrix by diagonal matrices, One may make
a rather basic distinction, however, between the types of left and riéht scal-
ing matrices which might be considered, In the case of right diagonal scal-
ing matrices one uﬁ.ght well have both positive and negative elements in the
scaling diagongl. For example, if cne wishes to revérse the scale for cer-
tain personality item variables in a data matrix to change a negative at.a.ted

otatenent to a positive form, then presumably one would use a negative element.

T
SO
i 11
i s
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ﬂowovbr, in the case of the left diagonsl multiplier, it is aiericult to see
by what rationale one might vish to give a negative woi’g‘he to a partioular ene
ey, In oneral, any left cu_.gonn multiplier for the data matrix would ale
moat certainly have all positive elements, | ,

Oince currently there is very little available on the mtiomh or techs
nique of 4lc‘aun¢ data mtricu by entlttéa,‘ and since no expsrimental or oom-
putational vork has been carried out, ve shall not pursus the matter further,
We shall direct our attention to problems involved in the lclubg of data
matrices by attributes. '

15,2 Scaling by Attributes
15.2,1 The Qeneral Problem of Scale, We have already discussed a number

of considerations involved in the scaling of a daﬁ matrix by attributes, or
the postmultiplication of the natural order data matrix by a diagonal matrix,
We have pointed cut that foctor analytic results mﬁy vary considesrably accorde
ing to what scaling procedurss are used., We have indicated that the Gordian
knot is usually cut by using standardized measures, Néverthaless, it would
seem desirable to have factor analytic procedures which are re;atively inde-
pendent of the ncﬁlo. We shall now consider in more detail some of the cri-
teria which suggest themselves in establishing scaling procedures,

15.,2.2 Criteria for Scaling. One of the most obvious rationales for
scaling has been previously suggested--namely, that of using natural units
vhen they are available, We have indicated that in the case of the three
category matrix in which one of the slabs is an entity-occasion matrix, thé
occasions regarded as attributes may already be in relative natural units,
For example, the measures of a set of entitlies on typewriting scores for suc-

cessive weeks are comparable both with respect to origin and scale, The
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" variation {n ldord; trcm one wo_ekkto the next tor'thu"g“roup of entities is
‘not some Artifact of the method of evaluation, but may be of considerable

~ interest in {taelf, Uﬁtovtunatoly, hﬁwover, such natural unlts are not availe
able for much of the data to be nubJoctéd to factor analytic loiutionl.

We have already mentioned the pouibiiity that the fastor yamlytic pro= |
cedure may be such that the solution is rchttvoly independent of any ucalé '
ing vdugongl matrix. We lh&ii now consider some of these solutions,

15,3 The Conmunality Problem and Scaling -

Throughout the previous chapters dealing with specific methods of factor
analysis wo have referrsd to the communality problem without Sotng very ‘lx’ncl.-
~ fic as to what is meant by the temm ccmunaut&. True, it is defined both
theoretically and computationally in texts cn factor analysis. In genersl
it is said to be that part of the variance of a system which 1s common to two
or more variables, This is not a very precise definition. ,

The communallity »p‘roblem has also been d.iacuued from a computational
point of view, Here the problem is to determine the t_iingoml elements of a
correlation or covariance matrix so as to raduce the rank of the matrix. To
solve this problem we must decide whether we want to reduce the rank of an
experimental correlation matrix precisely, or vhether we want to reduce the
rank of andthar matrix vhich resembles the original correlation matrix as
closely as posolble according to some criterion. But in the latter case ve
have to define "aa cloaely as possible,"

The traditional approach has used approximations to the diagonal values
vhich cnable oﬁa to account more nécuratel,y for the offdiagonal elements |

with a smaller nunber of factors than 18 accounted for by using unity in the
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diagonals, We have seen that for correlation and restdual matrices one method -

{8 to substitute the largest absolute offdiagonal element in & colusn for the
diagonal olement, » » |

These procedures, however, do not provide precise or rigorous dctthul.ona
of 'comumnt!.u, nor do thoy indicate an underlying mathematical model tbr
their dotermination. They are merely verbal and arithmetic procedures with
little reference to their interpretation or umnm« for the data natrix
from vhich the correlation matrix is derived, We have indicated in Chaptor"

b tht one should be able to account ccmpletely for the results of a factor
analysis in tanni of the original data matrix rather than in terms of thd
correlation mafrix. |

Perhaps scme of the best work on the cammunality problem has been done
by Guttman (1958), Harris (1962), and earlier by Lavley (1940) and Rao (1955).
In general theae investigators have been aware of the relationship of the
communality problem to the scaling problem, Ixanicie in their vork is the
notion that the communality problem is really a scaling problem,

We shall therefore consider certain typea of factor analytic solutions
which have techniques for solving the scaling problem built into them, These
are, in effect, methods which are independent of scale or ih which the scale
ing diagonal cancels out in the mathematical model,

15.4 Charncteristics of the Methods

All of the modela to be considered have certain characteristics in common,
Firat, they are all special cases of the rank reduction methodj second, they
are least square or basia structure solutions third; each solves for a scal-

ing diagonal matrix 3 and fourth, they are what may te called doubly iterative

solutions.
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15,41 Opecial Case of Rank Reduation Method, Each of the methods to be

“aonsidered is a spacial oase of the vank rnduqtton’tbrmuls {n that the removal

of each faator results in & residual mitrix which I'ior rank one less than the :

provious rosidual matrix, Purthermors, each approximation té aittotdr natrix
‘48 o rank reduction solution, |

15.4,2 Laast Square Basto Structurs Obldtlonn. AlL of the loluttoi\l
vo shall consider are basic ltructuro’or least square lolutiona, with respeoct
to the scaled matrices, This point will not be elaborated here, as it will
be clarified in the computational procedure and the mathematical proofs,

'15.4,3 Bolution for Scaling blngcmlo. As implied by the previcus dis-
duuion, all or_' the solutions to be considered solve for a scaling diagonal
matrix, It 18 to be cbserved, however, that the procedure used to solve for
this scaling diagonal matrix varies considerably from oné method to anotﬁer.
In two of the models, a single scaling diagonal matrix is solved for. In the
other model, the scaling diagonal matrix is different for each factor vector,
In this latter model, a scaling diagonal matrix is found for each residual
matrix. The solution, however, is again independent of any particular scale
that we start with, such as in the normalized data matrix,

15.b.4 Doubly Iterative Type Solutions., All of the methods to b2 con-
sidered night be reg&rded as doubly‘iterative, because not only does one
iterate to the solution for a factor vector or matrix, dbut one also iterates
to the scaling diagonal, This is because the scaling diagonal matrix is it
gelf a function of the factor loading vectors, which in turn are a functior
of the scaling dlagonal matrix. One of the consequences i3 that tﬁe.aolution
may be vory latorious and costly. Even with high speed computers, the cost

and time may be excessive if the number of variables or attributes is large.
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15.5 Kinds of Oolutions
Ve shall consider six diffarent kinds of solutions which are indapendent
of idah. These may be divided into two general olasses,

The first of these classes we call the lpco!,ticity type solutions, The
‘model on vhich these solutions are based was first proposed by Lawley (19%0) k
| “and later dsveloped m essentially the same form, but.' from a scmevhat different

set of hypothﬁu and assumptions, by Rao (1955). | : .

| The second class of solutions may be called the cormunality t;rpc solu=
| tions, These are baced on a general model developed by Horst, Beginning in
1950, thé method was preuented'in lecture notes at the University of Wuiting-
~ton but these were not published, More recently, Kaiser, in personal ccme |
munication and in conference presentations, proposed a related type of px?o-
cedures,

Both the specificity and the communality types of solutions may be di-
-~ vided into inree different variations, The first of these we shall call the
successive faator method, J:t requires the solution of a single factor vector
at a time., With the solution for each factor vector, a residual matrix is
" calculated and another factor vector is calculated from the residual matrix.
Ihin type of solution is analogous to the single factor residual solution
outlined for the centroid and the basic structure or principal axis methods
in Chapters 5 and 7, respectively, With the solution for each factor one ob-
tains a‘ scaliﬁg diagonal matrix which is a function of the elements of the |
factor vector itself, | |

The $Qc§nd type of solution for both .thu specificity and the communal-
ity models may be called the factor matrix solution, Here one makes some as-

sunption as to the number of factors in the set and begins with some crude

- ot
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approximation matrix of this order roﬁ the faotop ﬁnﬁitx. Dy a process of
'udgoiui1V6 iterations ons converges to the factor loading matrix,and to the
soaling dlamml which 18 a function ori all of the factor veators,

Theso'two types of loiutiono do not in general give the same results
for a specifiesd number of factors, The »lca]b.!.ng varies from one factor vector
solution to the next in the residusl method, whereas it uonvorail to a single
diagonal matrix when one iterates to all the 'daund ractorr vocfou'lhul-
tansously, '

Thers is a variation of the factor lmntrrix method vhich combines the
foatures of both of the others. This we shall call the progressive factor
ﬁatrix method, ch one begins vith the solution for a single factor and
then aucécuively adda factors to the factor loading matrix without ever
computing residual matrices,

15,6 Specificity Sﬁccesaive Factor Solution

We shall first tnkg up‘thc specificity ascaling method for each of the
three vnriaﬁions: the successive factor, the matrix, and the progressive
matrix solutions. First we shall consider the successive factor type solu-
tion,

15.6.1 Characteristics of the Solution, This method is characterized'
by the fact that only one factor at a time is solved for, after which a resi-
dual matrix is calculated, the next factor loading vector is calculated frcm
the residual, and so on. _

All of the specificity types of solutions are similar with respect to
the scaling unit solved for. The scaling unit is such that the variance of
the rescaled variables is proportional to the reciprocal square root of their

raesidual variances, That is, we define these residual variances as the

e e st o e o e
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original varfance of the variables less th- amount of variance agceunted for

by s uvon't"}wtor or sst of factors, depending on which type of lolutién is
“used, In the suscessive factor solution, the first soaling constant for each
~ variable is proportional to the roaiﬁrooal qqudro iddt of the dtf!‘onnoo be-
tveen the ortal.nai variance of the vnrtnbloi and the variance sccounted for
by the first factor. The first factor is then m°voa from tho covariance
- m&trlx to yleld a residusl matrix, This residusl mjbrix is then ushd in
‘th§ aémo manner as are subsequent residual matrices,
| 15.6'.2 Comjutatlonal Fquations

15.6.2a Dofinition of Notation

Cisa corralaﬁion or covariance matrix.
Dc is a diagonal matrix of the diagonals of )

a 18 an arbitrary vector,

o

D a is a diagonal matrix whose elements are from the vector g8

i —

j‘P is a tolerance limit,

15,6.2b The Equations

B2 = C1 (1 ¢ 1)’5 ‘ (15.6.1)
2 2 1 ‘

o = (Dg - Do“) | (15.6.2)
U = 0% a (15.6.3)

0 0" 0 :

PRI A Y | (15.6.h)

Ao

i e,
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P | R (15.6.5)

) ’ S h Qe
® = e, : R (15.6.6)

LU A o (15.6.7)

U= 2 : N (15,6.8)

1" = “Ck 1U - 1& p 4 ‘ ’ (150609)
@ = 1 __ | | | (15.6.10)
2y | |
- 1+18 - 1" Gi (15.6011)
Uy =% =P (15.6.,12)
1 = 8, (15.6,13)
L = C-n, a:l (15.6.1h)

15.6,3 Computational Instructions, In this procedure, as in all of the
methods in this section, one may begin with either a correlation matrix or a
covariance watrix scaled in any convenient fashion, Ordinarily it is probabe
ly best to work with correlation matrices, These are fomiliar to most investie

gators and are convenient {rom the point of view of number of digits carried

in the élementa of the matrix,
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M.l of tho dlagonall are untty, of couru, in the oornhtlon mtrix.

T 4 A 2t S

In any csu, tor all of the methods to be dhau-ud, unl.ty is used in the
dnmmll of corrohtlou matrlcu, and variances are uud in the diuomh
of covariance utuau. _
We begin with scme arbitrary approximation to a firot factor losding
vector, This can bo, for example, a firat centrold vector, as 1ndicatod in
‘ £, (15.6.1). It could also be a principsl axis factor loadins veator,
The noxt step is indicated in Eq. (15.6.2), Here one gets the differ-
ence between the dlagonal slements of tho covariance or correlation matrix
and & dlagonal made up of the squared elements of the veator in Eq, (15.6.1).
This 15 indicated on the right hand side of the equation, This diagonal
matrix is then inverted to give the diagonal matrix on the left of the equa-
tion, It will be recognized that this matrix on the left is a diagonal matrix
of the reciprocnl'or the difference between two diagonal matrices, the first
of which is a diagonal matrix of variances,and the second'of which is a dlagon-
al matrix of the variances accounted for by the first approximatio. factor.
The next step is indicated in Eq, (15.6.3). Here we calculate a vector
OU on the right of the equation, It is obtained by premultiplying the vector
:;'Eq. (15.6.1) by the diagonul matrix of Eq, (15.6.2).

Next we calculate the W vector in Eq. (15.6.4). This, as shown on the
right of the equation, is obtained by postmultiplying the covariance or cors
relation matrix by the oU vector calculated in Eq. (15.6.3) and subtracting
frcm the product the ve;:;r o8 calculated in Eq. (15°6'1)f

Now we calculate the sc;I;r quantity indicated by Eq. (15.6.5). Here )

ve get the minor product of the vectors calculated in Eqs. (15.6.3) and
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(1.5 6, lo) and tako the reciprocal lquuo ¥oot of this produot.
‘I‘hon ve pc the first rank veduation approximation to the first ractor
' loading vutor, as indioated in Eq. (15.6,6) by the vector 1: on the loft of

- the equation, m- L8 seen to be the vector LW of Fq, (15.6 ) rnu).tipnod
’ by the scalar quantity of a ‘of Eq. (15.6.5). _
Eq, (15, 6.7) gi.vn tho ith npproximt!.on to the D matrix as the inverce
of a matrix obtained by subtracting rrcm the diagonal of the C matrix the core
. responding squared elements of the current cpproximtion to the factor lcad-
ing vecfor. As will be scen, therefore, Eq. (15.6.7) gives a diagonal matrix
wvhich iil an approximation to the inverse of the diagonal of the residual
© matrix,

The general equation for the U vector is given in Eq. (15.6.8). This is
simply the current approximation to the factor loading vector promﬁlﬁplted
by the diagonal matrix of Eq, (15.6.7).

The general equation for the W vector is given by Eq. (15.6.9)s This is
obtained by postmultiplying the correlation matrix by the U vector of Eq.
(15.6.8) and subtracting fiem the product the previous approximation to the
factor vector,

The ith approximation for the scalar quantity a is the reciprocal square
root of the minor product of the vectors given by Eqs., (15.6.8) and (15.6.9),
as indlcated on the right hand side of Eq. (15.6.10). |

The general equation for the i+l approximation to the first fuctor load-

‘ing vector 13 glven by Eri. (15.6.11). This is the W vector of Eq. (15.6.9)
multiplied by the scalar of Eq. (15.6.10).
To determine whether we have gone far enough in our approximatlon, we

can ccmpare successive approximations to the a vector given by Eq. (15.6,11).

—
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However, it is probably simpler to use the oriterion indicated by Eq, (15.6.12),
Thil is tho'dtttbrinco between successive g vslull.v These a values lhodld, in
general, increase in magnitude or ntabinzo IO that whon the P value indi«
oated by Eq. (15.6 12) is outticiently -mall, we may stop the iterations
for the first factor vector, ; , 7

When the itoratlonn are sufficiently aiouo, ve mﬁy togard the 1+l ap-
proximations to & as the rirot factor louding vcctor, nnmoly, s sy as given

1!1 Eq. (15.6015)0

Next ve saloulate a residual matrix 2c as indicated in Eq. (15.6 L),

This is cbtained by oubtracting the major produot moment of the factor 1oud-
ing veator trcm the covariance or correlation matrix,

We now proceod through the same sct of ccmpututionu outlined in Eqs.
(15.6,1) through (15.6.13), except that these are porfbrmed on the residual
matrix given by the left side of Eq, (15.6.1h4), rather than on the original
matrix, | ‘ |
Each successive residual matrix is calculated as in Eq, (15.6.15). Then
the routine outlined in Eqs, (15.6,1) through (15.6.14) is applied to each
of the residual matrices, Thebcriterion of when to stop factoring may be
one of those suggested in previous chapters,

15.6.h Numerical Exomple. A numerical example of the method is given

below, We use the same correlation matrix as in previous chapters, This cor-

relation matrix 18 repeated for convenience in Table 15.6,1, The arbitrary

vector for each of the four factors was taken as the unit vector. The solu-
tion is doubtless dependent on the arbitrary vectors, and currently no "best"

method is available for determining these vectors,
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‘The first row of Table 15,6,2 gives the number of {terations for each ‘

‘of tfu ﬂ.nf. four factors, The second rov gives the variance accounted for - ‘

by each factor, The body qf the table gives the first four factor loading
vectors, As in tho methods of previous chapters, 'dnly the first three factors
| appear "significant," |
' It 15 interosting to note that the factor loading vectors bear 1ittle
reamblmo to the principal axis factors of Chapters 8, 9, and 10, Asa |
muttor of fact, they resemble more closely the factors given by the group
centroid methods of Chapter 6., It is not clear, however, to what extent the
ractort mlght. chango if vastly more iterations wore taken,
15.7 The Specificity Factor Matrix Solution

15.7.1 Charactoristics of the Method. In this method the residual
variance scaling matrix Is based on sl) of the mctori to be solved for,
rather thAn on a single factor as in’tho method just outlined, Therefore
we do not have a rescaling after each factor vector, The method 18 ;lltter-
ent also in that, instead of solving for a single factor at a timo‘ and getting
a residusl matrix for each cycle, we start with a rough approximation to the
complote factor matrix in which some specified number of factors is assumed,
We then iterate successively to the factor loading matrix and to tﬁe scaling
diagonal whose elements are the reciprocal sguare roots of the residual vari-
ances,

15.7.2 éomputatioml Equationa

15,7+2a Definition of Notation

- C is a covariance matrix.

D

o is ithe diagonal matrix frem C.

e st s
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Table 15,6,1 « '1‘h§ Correlation Matrix
1,000 0,829 0,768 0,108 0,033

0,829 1,000 0,775 0.115 0,06

1

0,768 0,775  1.000 0.272 0,205
0,108 0,115 0.272 1,000 0,636
0,033 0,061 0,205 0,636 1,000
0,108 0,125 0,238 0,626 0,709
0,298 0.323 0.296 0,249 0,138
0,309 0.347 0,271 0,183 0,091

‘Table 15.6,2 = Specificity Successive Factor Method, Number of Iterations,
Variance Accounted for, and First Four Factor Vectors ‘

24 21 30 30

2,9730 2,0250 1.1978 0,0898

0.,8910 =0,1076 -0,0480 =0.0116
0.9067 =0,0867 -0,0182 =0,065k
0.8572 0.091% -0.0932 0,087k
0.2151 0,7438 0.0475 0.2218
0,1389 0,8266 =0.0821 =0,0500
0.2025 0,7968 -0.0660 -0.0507
0,3911 0.1770 0.6572 0.0118
0.3957 0,1012 0.73035 =0.0627
0.4539 0.2908 0.4556 0.1360

0,108
0,129
0,238
0,626
0.709
1,000
0,190
0,103
0,291

0.298
0,323
Q.
0,249
0,138
0,150
1,000
0,654

o.521

0,309
0,347

o ok

0,091
0.103
0,654
1,000
0,541

0.351

0369
0,50%
00568
0.2%

0.291

0,527
0.541

1.000

[ i
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Q: 18 an arbitvary factor matrix approximation of specified width,

* s the ith approxlmation to the faotor matrix,

D o of 18 the diagonal matrix of ,aa’,
174

i

115 is a triangular matrix,

- B 1s a tolerance limit,

15.7.2b The Equations

2 B
o - '(oc - Doa o“') a (15.7.1)
2 .
OU - OD oll (1507.2)
e ' (15.7.3)
S - o"' OU | (15-7-!*) N
fot TR
=< ¢! = . .
Lo“ ot © }- N J (15.7.5)
4 ’ :
l& = ow ot' (150706)

) | (15.7.47)




v 1" * -1D9_1. o ' , “15'708)
LI N RS - (1)
8 W i" ‘ (15.7.10)
R [ 8 :

IR CUEY - (s7.)
Mgt M ; L
’1‘ [ ] 1" 1%"‘ (15-7012)

-P (15.7.13)

i
tr (!z)
oo l (it

15.7.3 Computational Instructions. In this variation of the specifi-
city method we postulate a given nﬁmbor of factori and begin with an arbite
- rary factor loading matrix including the assuved number of factors. This we
may cbtain from the methods of previous chapters.

We first calculate a diagonal matrix as in Eq. (15.7.1)s This is ob-
tained by subtracting from the diagonal of the covariance matrix the diagone
al of the major product moment of the arbitrary factor ioadﬁxg matrix. Then
we take the inverse of this difference matrix as indicated on the right of
Eq. (15.7.1), |

The next step is to calculate the U matrix, as indicated in Eq. (15.7.2).
. Here we premultiply the first approximation to the factor loading matrix by

the diagonal matrix calculated in Eq, (15.7.1).
We then calculate a W matrix, as in Eq. (15.7.3). This i8 obtained by

e s e esnins ok

T s s e, . .
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po-tmultl;p'lyma the aévﬁrtun'co matrix O by the § matrix oaio\ilatad tn Eq)
( 19, 1.2) and subtracting from the produat the Arbuury lpproxmuon to thc
. faator mtrtx. ; ; _

Next ve caloulate the matrix 8 in Eq. (15 T ’G’ mil hk the minor pro=
duot of the matrices csloulated in Eqo. (15.7.2) and (15,7.3), It can be
seen by the donnlttonl of these mtricu thst the produat is nymotru.

We nov indicate & lupomtrix of the matrices solved for in Eqs, (15 7 ))
and (15.7.4), This is given in the right hand side of Eq. (15.7.5).
left hund slde of Eq. (15.7.5) tndicates a partial trungular factoring of
the nupomatrlx. }

The lower pnrﬁ of the left partial triangular factor is then the first
npproklmutton to the factor lcading matrix, as indicated on the right of Eq.
(15.7.6). |

The general equations are given in Eqs. (15.7.7) through (15.7.13). Eq.
(15.7.7) gives the general equation for the 23 matrix. This, as indicated on
the rlghf, is obtained by subtracting rfom the diagonal of the covariance
matrix,the diagonal of the major product moment of the current approximation
to thes factor loading matrix,and thén taking the inverse of this difference
diagonal matrix.

Eq. (15.7.8) glves the ith approximation to the U matrix, vhich is the
current approximation to the factor loading mntrix.premultiplied by the di=-
agonal matrix of Eq. (15.7.7).

The ith approximation to the W matrix 18 given by Eqs (15.7.9). This is
the product of the covariance matrix postmultiplied by the U matrix calcu-

lated in Eq. (15.7.8), lesa the previous approximation to the factor matrix.
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Bq. (15 7.10) indioates the ith approximation to the lyumtuc 8 mtrtx,

vhich is the minor product of tho U and w matrices calcuhtcd, rupoct!.voly, ‘ ‘

in Eqs. (15.7.8) and (15 Te9)e
' We indioatc in gonoral the supermatrix made up of tho matrtcu calcu= -
lated in Eqs, (15.7.9) and (15.7.10), as on the right hand side of Eq,
(15,7.11). We then !.ndicato tbo partisl trisngular tnctoring of this super=

matrix, as shown on tho left side of Eq. (15.7. 11).
'I'h- lower matric element of the lupomtrlx on the left hand side ot

Eq. (15.7. 11) uvel the next approximation to the factor loading matrix, as

indicated in Eq. (15.7.12). It can be proved that the triangular matrix in-

dicated in the upper element of the left hand mat:ix in Bq. (15.7.11) con-

verges to a diagonal matrix whose elements are the largest roots or basic

diagonal elements of the scaled covariance matrix,
We then assume that the traces of uucccalivc L matrices or the sums of

their diagonal elements will converge to scme value, Therefore, as indicated

in Eq. (15 7.13), we take the ratios of successive traces to get H values,

When these are sufficisntly close to unity the computations cease,

15.7.4 Numerical Example, We use the same correlation matrix as in the

previous hethods. For the aabitrary matrix we take the first four principal

axis factor vectors of this matrix as found in previous solutions.

For convenient reference the first four principal axis row vectors are

gliven in Table 15.7.1.
Table 15.7.2 gives the successive traces of the t matrices for thirty

iterations.
The first row of Table 15.7.) glves the variance accounted for by each
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of the first four factors, The body of the Iublnk gives th rir-t ktouvr cblunn
factor loading \'(ootoro. These factor loadings b«r ntth nhtton to ‘the
prinotpal axis factors of ‘I’abh 15.7, 1. Hovever, again it 1s apparent that
the fourth factor my be tgnond. While the rnotor 1o|d1n¢| are not the same
within doclma]. error as those of ’malo 15.6.3, ve may compare factors \d.th
the three highest IOIdS.ngl. For 'l‘abl.u 15.6.5 and 15.7.5 we have as cenpcr;
able factors nipocuwly, factors 1 and 2, 2.and 35 3and 1, Aptn it pay
be thst a mat pany more 1tantions would yield a mtr!.x conlidnmbly ur-
,roront rrcm that of Table 15.7.3.

15.8 The Opecificity Progressive Faator Matrix Mathod
15.8.1 Characteristics of the Method, This method is essentially a

combination of the previous two methods, It uses the same scaling rationale-- |

that is, the reciprocal aqunre roots of the residual variances of the attri-
butes, It starts with a s!.ngl.o factor and proceeds by adding lucceulvo
factors, ‘

it differs essentially from the first method, however, in that no resi-
dual matrices are calculated. It is cimilar to the second method in that
only a single scaling of the variables is solved for, It differs in that no
assunptions are made as to the number of factors required,

15.8.2 The Computational Equations

15.8,2a Definition of Notation |

(k) subscript designates a matrix of width k,

Other notation 18 the rame as in Section 15.7.2a.

b e i
B R .

e stk s
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Table 15,7,1 « !irnt Jour Prinoipal Axis Row iaotdrVV¢otorlbor tho'cdrrall-'

tion Matrix

0.717 0,740 0,773 0.5&6 O.hGE 0,518 0,640 0,613 0.7%3
0,493 0,478 0,206 =0,6k9 =0,Thk 0,694 0,080 0,166 «0,0!

0.350 0,322 0,406 0,068 0,181 0,188 -0,588 «0,621 -0,369
0.0}O '00056 00009 00102 '0011’ '00‘29 '00288 '0016’ 00566

Table 15.7,2 = Traces of Successive t Matrices for Thirty Iterations

GT.3460  Sh,133%  sh,0273
57,4669 5,126 54,0201
55,3702  0.,1747 54.0130
54,6664  0,1646 54,0061
54,3094  0.2453

54,2859  0,4108

54,2323  0.,2609

54,2035  0.3148

54,1855  0.3076

54,1725  0,3691

54,1616 0,031k

54,1518  5h,0u21

s5h,1425 54,0346

Table 15.7.3 = Specificity Factor Matrix Method. Variance Accountsd for
and Column Factor Vectors for Firat Four Factors

2,8295 1.,6250 1.6337 0.6243

0.5091 0,7508 «0,0229 0.0h39
0.5297 0.7hl7 -0,0087 0.0093
0.5390 0.6577 0,1617 0.0735
0.h1h8 ~0,1135 0.6337 -0.0521
0.3476 -0.0770 0,7470 -0.0199
0.5858 0.0322 -0,0403 =0,5875
0.9611 «0,1897 -0,0760 0.0559
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15,8,2b The Equations

(k1) * (21 0ee 2 | | o (isaa) |
o*i) = (B) 7 o) | - “ o ‘(15.8.’2’)
| °D: A "o*() o"“fk))'l | | .(.15'8;5,
My * ko) - _(‘15‘.8.!;)‘
| 0Q<k) " o%x) " o®x) | k (15.8.5)

ot(k) o%k) ™ o"(x) o¥(k) (15.8.6)

1%(k) " o"(k) otfk) | (15.8.7)

D = (o -YD;“(k) laik))-l (15.8.8)

1) = 1”5 1%(k) ’ {15.8.9)

My " C Y0 T 1%k | (25.8.10)

1800 %) = 1) 10 (15.8.11)

11%) = 1¥(x) 1‘?2:) - | (15.8.12)

15.8,3 Computational Instructions, This method begins with an arbit-
rary vector as in the first specificity type of solution. The method for

getting the flrst factor vector is the same as in that solution.
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Ve next procesd to indicate a factor loading matrix, as indicated tn Bq,
(15.0,1), vhere now k-l is the number of factors cﬁrnntl;y'aolvod tor,

‘We then indicate an auguented matrix to which one more factor has been
added, as indicated in Eq, (15.8,2), To begin vith, the firat matrix in the .
, kpmnthem on the right of Eq, (15.8.2) 1s ‘l_imply the first factor loading
vgc;oi 8 yo This 1o augrented nov by a second ’arbltrdry vector vhich may
be assuned to be a reasonable approx;mubn to the second factor loading
vector.v | | N | |

Ve then have, as in Eq. (15.8.3), o diagonal matrix which is, as in-
dicated on the right, the reciprocal of the diuéonnl of the covariance matrix
minus the diagonal of the major product moment of the matrix in Eq. (15.8.2).

' We indicate in Ei, (15.8.4) the matrix of Eq. (15.8.2) premultiplied by
the dlagonal matrix of Eq. (15.8.3).

~ Eq. (15.8.5) 16 obtained by premultiplying the matrix of Eq. (15.8.4) by
the covariance matrix and subtracting the urbitrarykapjroxlmation to the
factor matrix frem it. |

Eqe (15.8.6) indicates the minor product mcment of the matrices of Eaqs.
(15.8.4) and (15.3.5) as a major product of a partial triangular matrix, In
particular, this gould be adlved for by means of the partial triangular factor-
ing of the supermatrix indicated in Eq. (15.7.5) of the previous method,

Eq. (15.8.7) glves the first approximation to the factor loading matrix
of width k as the W matrix of Eq. (15.8.5) postmultiblied by the inverse of
the upper triangular matrix of Eq. (15.8.6).

The general iterative type of solution is indicated by Eqas (15.8.8)
through (15.8,12), Here the equations ave, vespectively, the same as Eqs.

(15.8,3) through (15.8.7), except that now the prescript Leccmen § for the
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Lth approximation, In this type of solution ve may again iterate to some
convergence eriterion for the trace of the trtnngﬁlu matrix, {ndicated on
the left of Eq, (15.8.11). If the traces of tvo succossitve g._ matrices are
~sufficlently Qioio, we may assume thut ‘t.he @pproximuon 1s sufficiently
close for thi cu:nht nunber of faators, k. ;

Once thia oritovx";kon has been satisfied, ve agu!n augment the ourrently
stabilized taci_ov loading matrix»by another arbitrary vector, which is pre=-
sunably reasonably orthogonal to the curront faator vocton' and which is not

" too poor an approximation to the next factor voctor we wish to obtain,

Wa then proceed again through Eqs, (15.8.2) to (15.8.7) to get a first
approximation to the factor loading matrixkith one more factor added, '

Going through Eqs. (15.8.8) fhrough (15.8,12), we continue to iterate,
incrensing the valuo of subsecript i until the solution has atabilized to some
specifiod tolerance with refarence to the traces of two successive t matrices,

We proceed to augment the matrix in Eq. (15.8.2) until we have accounted
for enough factors, according to some specified criterion, This eriterion

may woll be simply the sums of squares of elements of a currently stabilized
a matrix, such as given in Eq. (15.8.12). The sums of squares of these ele-
ments are, of course, the amount of variance accounted for by the given number
of factors,

-15.8,4 Numerical Examplo. We use the same correluation matrix as in the
previous section, In this numerical example we use as the nrﬁitrnry vector
for each new factor the corresponding principal axis vector of the correla-
tion matrix.

The first row of Table 15.8.1 gives the variance accounted for by each
of the firat four factors, The body of the table gives the first four factor

vectors. -Agaln it appears that the fourth fuctor may be Lgnered,

a4 o 1 AT



o

‘ ,‘i'abic '15.0,1 . apoairioity Progressive Factor Matrix Mathod, Variance
“Accounted for and First Four Factor Vectors ‘

e 1 e il b i ey e e e

33946 1.8123 1,096 0.263h

0.8231 0,348 <0,1503 -0,0012
0,84kl +0,3236 «0,1332 0,0332
0,8205 +0,1577 «0,2405 «0,0311
0.3659 0,6436 «0,2086  0,0083
0,280h  0,7159 =0,3664 = 0,0805
0.3410 0,6670 +0,3468 0,0579
0,534  0,2126 00,4568 0,2343
0.5445 0.1573 o.?665 0,2987
0.6458 00,3463 0,4095 «0,3276

T g T T

AR T
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15,9 'l'hc Comumuty Ouccessive Faator Method

: We shall now consider the first of tho ccmmuty cuu of ocnlins ‘
methods, In thon, methods ve have the three different types of aoluttono--v
mt;, the successive factor vestor solution, the factor mtr;i solution,
| and _iho progreasive thctor matrix -oiutlon. These vmthodn are essentially
the same as the l'pccinctty scaling methods oxcoﬁt‘thnt the soaling diagonal

18 u:tiront, and 1o diagonal matrix is subtracted from the correlation matrixe
,Hﬁro the scaling constants are inversely proportional to the lquaro{x'o'ota ,

of the variances accounted for by the vectors loivod for, This prtnciﬁl ot
scaling is Juat ﬂio §pponi~to of that used in the opecificity method, In the
npccincity method the scaling is such that the variance unsccounted for by
the faotors ;l the im for all vnriublu,v wvhile :l_n the communality method
the scaling is such that the variance acc’ountad fbr by the factors is tho‘
some for all variables, In this latter proceduré it is assumed that more
weight should be given to the variables which othorwiao‘vould have less of
their variance accounted for by the factors,

We begin now with the computational equations for the successive taotoi'
method, |

‘15.9.1 The Computational ’Equntions

15.9.1a Pefinition of Notation

g is a correlation or covariance matrix,
V 13 an arbitrary vector.

18 is the ith approximation to a factor vector.

D a 13 a diagonal matrix of the elementa of
i

a—

£:c

P ETST ITERTE Y I R
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H, 18 a tolerance llult,
k10 18 the kth residual matrix,
15.9.1b The Equations
‘® = CVv (v ¢ V)'*

OD » ﬁ%

ol

(15.9.1)
(15.9,2)
(15.9.3)

(15.9.4)

(1549.5)

(15.9.6)

(15.9.7)

(15.9.8)

(15.9.9)

(15.9.10)

| (15.9.11)




o | o (13.9.12)
omum o] | wH i 912
1% 17 o ' : ,
By " g8 - (15.9,13)
£ =0 318 . - (15.9.4)
k41C = g€ e 8y o (15'9'15)

15;9.2 Cmputatiom; Instructions, The ccmputational procedurs for
this method is the same as for the corresponding mothod in the specificity
class of solutions, except that the D_a_ matrix and the ¥ vector are calculated
differently, | ‘ ‘

By moans of an arbitrary vector V we firat calculate the rank reduction

o3 Vector as in Eq, (15.9.1).

Next we tako the inverse of the elements of the o* matrix given in Eq.
(15.9,1) to construct the D matrix given in Eq. (15.9'.-2). This is & diagonal -
matrix of the inverse of the elements in the vector given by Eq. (15.9.1),

Eqe (15.9.3) indicates U as & vector of the elements of the D matrix
~ glven by Eq. (15.9.2). '

Eq. (15.9:4) 18 the C matrix postmultiplied by the U vector of Eq.
(15.9.3). ,

Eqs (15.9.5) is a scalar quantity which is the reciproocal asquare root
of the minor product of the vectors of Eqs. (15.9.3) and (15.9.4),

Eé. (15.9.6) gives the W vector of Eq. (15.9,4) multiplied by the scalar
of Eqe (15.9.5)s
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“Eqss (154947) through (15 9.11) tndicate the muuom as 1n the um.-
" ogous specifioity method,

-Eqe (15.9.12) {ndicates the tolounoo uult wh!.oh u oumd to uvo [

lurnctently close approximation,

The i+) approximation to a 8, 18 then taken as the first fastor vncf.or,
as mdl.ca'ud in Eq, (15.9.1.5).

Eq. (15.9.1&) gives the first ultdual matrix as in the ‘specifioity
method,

Eq. (15.9.15) glves o generalization of Eq, (15.9.14),

The procedures for Eqs. (15.9,1) through (15.9.,13) are applied to the
'nucceuive residual matrices, ,

15.9.3 Nunnrica.l Example, We use the same correlation matrix as in
~ the three previous exnmples to illustrats thia method, 'fhe unit vector is
taken for the arbitrary v&etorn. The computations are & 1ittle simpler with
respect to the D matrix, since it involves only the factor loading vector
and does not involve elements from the covariance matrix,

‘,'.i.‘tlo first rov of Table 15.9.1 glves the number of iterations for each
of three factors. The second row glves the variance accounted for by each
factor, The body of the table gives the first three factor loading vectora.
15.10 The Conmunality Factor Matrix Solution

15.10.1 The Computational Equationa

15.10.1a Definitions of Notation

C is a covariance or residual matrix.

ia is the ith approximation to the factor matrix,




Table 15.9.1 » Comunality Succesaive hotor Bolution.

99

- Numbep o

Variance Acoounted m, and nm 'mno Faotors

3
347106

0,6398
0.6659
0.7117
0,6326
0,5685
" 0,6087
0.6351
0,6053
0,7002

‘ 50
1.8969

0,3749
0.5751
0.2367
055
«0.67
-0.6347
0,3527
0.ioko
0.5139

105096

0.4982
0.4810
0,5164
=0,2927
o.ogs;
0.013
=0,4426
=0,4655
«0,2522

f Itui‘nttom_,_ -
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D_ ., is a dlagonal matrix of the Alagonals of ,a ,a’
LT o e Tl

tisa triangular patrix,
H is & tolerance limit,
15.10,1b The Equations

(15.’10.1)

D” » D !
0 O. OP
- o ® | (15.20.2)
= o . (15.10.3)
[ 4 !
otot = oV | | (15.1o.h)’
o ot ' (15.10.5)
2 3
D° = D (15.10.6)
i 1& 1:
1" - 1D2'16 (15.10.7)
M = R U , (15.10.8)
it 11:’ - 1w' U ‘ (15.10.9)
LI it"l (15.10,10)
tr (1t) ( )
-1 = 15,10,11
B (1e1t) i ‘

15,10,2 Computational Instructions. The computational instructions
for this method are almost identical to those of the corresponding specificity
factor scaling method, except that again the gfkmatrices of Eqa. (15.10,1)
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and (15,10.6) and the U matrices of Eqs, (15.10,3) and (15,10,8) are calou
lated diffevently, It will be seen that the D° matrices are cbtained by

taking the reaiprocal of the dlagonal of the major produst mcment of the
taotor loading matrix, rather than by oubtiuttng this diagonal frem the
‘original dlagonal of variances, This difference {n the caloulation of the
D h@tr!.cu reflects the difference in the underlying rationale of the method,
‘The W matrices m different in that they do not involve the subtraction of
‘the ourrent & matrix. ,

It will be noted that Eqs, (15,10,4) and (15.10,9) indicate the minor
‘produot of the ¥ and the U matrices as the major product moment of partial
trhnguhé factors, These equations do not explicitly indicate the Miu’
triangular fnc_tor!ng of a type 3 supervector, as indicated in Eqs. (15.7.5)
ind (15.7,11). However, the ccmputaﬂonu may be carried out in the same
fashion,

15.10,3 Rumerical Example, Again we take the same correlation matrix
as in the previous 1iluatmt:lona. We also toke its first four principal axis
vectors as the arbitrary matrix, .

Toble 15.10.1 gives the first four factor loading vectors for the cor- ‘ 1
relation matrix as determined from the reacaled matrix, These are consider- : ‘J
ably different from those in Table 15.9.1.

15.11 The Communality Progressive Factor Matrix Method

15.11.1 Computational Equationa

15.11.1a Definition of Notation

C ia the covariance or correlation matrix,

13{1{] is the ith approximation to a factor lcading matrix of width

ks




Table 5,10,1 « Communality Factor Matrix Method, First Four Fnator Veators

0,69a7
0,765
0.5903
0.4992
0,5515
0,6369
0.6078
0.7053

102

0.51h4  0,36h4
0,5022  0,3346
0.3215 0,k158
-0,6276 0,0kh2
«0,723% 0,1528
«0,6716 = 0,1633
0.1303 =0,590L
0,2166 =0,6236
0.0158 «0,3522

=0,0312
=0.0585
00,0135

0.1678
«0,1334
=0,1568
=0,2628
=0,1323
05589

.
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Di" u ialk is o matrix of the dipgoml of 15‘” 1‘(“!'

15’.11.11: The Equations

Yr-1) " (ay = o) ‘ | (15.12,1)
() = (ko) » o (15.11.2)
(k) ""';a(k) o) | | (15.21.3)
o) = oPlk) o¥(k) S a
M) = € o%x) | o  (35.11.5)
o%x) ottk) ™ o¥lx) o’(k) | (15.11.6)
1%(k) " 0"(x) o"f-x:) | | (15;11.7)
1"?;;) - D?“(k) 50 , (15.11.8) | }
1Y) - 1D?k) 1%(x) (15.11.9) |
My = € 1Y) (15.11.10) \
' |
) M) = M) %) | (15.12,22) 3
1+1%(K) ™ 1%(k) 1‘211) (15.11.12) ;
|
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1 () . - '
'x - g ' - P (15011,13)
©15.11,2 cmputntioulbzmtruouoril. uori_ the computational procedure
is essentially the same as that of the corresponding lpectﬂctty‘mthod, %

fcept' thatf again the D matrices are calculated only as the major produst moment |

of the factor loading matriy and the W matrices do not involve the subtraction

of the current approximation to the faator loading matrix.

15,11,% Numerical Example, The _comhtt_on matrix is the sane as in

‘the previcus examples.

The ﬂ.rat row of 'I‘abio 15.,11.1 gives the variance accounted for by each
of the first three factors, The body of the table gives the three factor
vectors,
Althdugh the three bccmumlity scaling methods give different results,
the general orders of magnitude of the factor loadings ccnpuré favorably with
one another and with the corresponding principal axis factor locadings., The
signa for corresponding elements of ﬂl tdur sets m the same for the first
three factors. |
15.12 Mathematical Proofs
15.12,1 Proof of the Specificity Successive Factor Method
Let C be the correlation of the covariance matrix, und consider ;
c-p2.aa = .C | (15.12,1) ‘

1
vhere a i3 a vector or matrix of specified width and

D = (Dc" D; a! )‘i (15.12.2)

We let
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. ' '.l‘nblo 15.11.1 » Communality Progressive Fastor Matrix Mothod. Variance .
. ' Aacountnd for and First 'mrn Faagtor Vcotorl .

5.73’0 2,0508 1,3401

0,66%% 0,50k 0,42k
0,600k  0.b932 0.3969
0,7306 0,3103 0,471
0,%5684 - +0,6273 0,0621
0,4908 -0.7257 0,161)
045429 =0,67 0,763
0.6630  0,1528 -0,5376
0.6331 0.,2390 «0,5627
0.7476  0.0312 -0,3406
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f

Da » & ‘150120’) L i
p(c-0%Da = aaa (15.12,b)

| He may begin with acme approximation to the first principal axis vector such

as the centroid, We let this vector be o ond calculato

2 2 4 5)
OD - (Dc .D'oﬂ) (15012.5) )

Then consider

Do = D fc - o D(Cc - on'a) oP a"'* '(15.12.6)'

2y 2 - '
D ]on oa(ouo

o
vhich 18 a rank reduction form,
Ho lot ;
N o”e ° ~ (15.12.7)
#raﬁ Egs. (15.12.6) and (15.12.7)
(15.12;8)

«2 ) -2 -4
= (- )oulou (c-on )oul

,I!' ve let
(15.12.9)

0" - COU-Oa

and
& - 1 (15.12.10)
g U

v

Then from Eqs. (15,12.8), (15.12.9), and (15.12,10),
(15.12.11)
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In genoral thin, ve have

2 2.
(07 = (g =Dy

We may continue until ﬁ atabilizes and then calculate the residual

- [}
18 = G2,

{15.12,12)

- (15.12,13)

(15.12,14)

(15.12,15)

(15.12,16)

(15.12,17)

The operations on lc are the same as for C, Succesaive residual tC's may be

obtained to a specified number of factors,
We show in Section 15.12,7 that the solution is independent of
15,12,2 Proof of the Specificity Factor Matrix Method

scale,

Let a be a factor loading matrix of specified width, We may still use

Egqse (15.12.1) through (15.12,7) without loss of generality. We now, howe

ever, introduce

' ’
otot » OWOU

Analogous to Eqe (15.12,11), we now write

. e
1& - ow ot

{15.12.15)

{15.12.19)

PPN
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In general then, for s of any width, ve have

192 - (0, .pp ‘u,)" | : | ‘(Ls.xa.go)

RS LA | ' :

Mo ¢ ,U-,a _ - . (15.12,22)
] !

AL Y | , - (15.12,23)

1420 » R IR % | (15.12,24)

These ltemtiom my continue until
tr (mt) - tr (lt) = P (15.12.25)
for P nufﬁclently small, Then 11: will approach the basic diagonal 8 of
DCD=-I = Q8¢Q' | (15.12,26)
and
Q 55 = Da =« @& | (15.12.27)

That this solution is independent of scale ia shown in Section 15.12.7.
15.12.3 Proof of the 3pecificity Progressive Factor Matrix Method
Let Egs. (15.12.20) through (15.12.24) be the iterative procedure for a
of width k. In particular, k may be 1. Continue until Eqe (15.12.25) s
satisfied and indicate |

) = (a.1 vee “.k) | (15.12,28)

e e s e
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lat

~oMkn) " (8,0 ey o?)

(15.12.29)

where odyiu qh nrbttrary‘vactov atstinat t:om_all the preceding l.i'l ahd

prefarably orthogonal to them.

Then let
2 |
D° = (D, =D < al )
0 © " “oMke1) 0% (xe1)
\ |
o’ " o o%ke)
W

" " C ol = o®(x+1)

’ot t! =« W VU

0 o o
L |
1® " oot

and in general
t (ng

2
Yo DT (k)

Mom €U -

- WU

1ty A

. - M
1118 = ¥yt

We may continue until

1¥k+1), (k1) <O

) D:‘(k+1) 1"(k+1))

=

(15.12,30)

(15.12.31)
(15.12,32)
(15.12.33)

(15.12,34)

(15.12.35)
(15.12,36)
(15.12.37)
(15.12,38)

(15.12,39)

(15.12.%0)

- - e e 4
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or sooner, .
_Horc/alno the solution is !.ndopondont of scalse, as shown in Seotion
15.12.7, | o |
15.12,h  Proof of the Comumuty Suocnnvo Pnctor thor Mothnd '
‘Lat C be tho cmrunco matrix and comidor the rank nducuon voctor

l gzvon by

o - c v(v e v)'* : (15.12.41)

where V 1is arbitrary.

‘We indicate a diagonal of the eloments of o® by

P - o:u '. , ; (15.12.&2)'
 Lat
oo« 0% el P e o? o) (15.12,43)
In general, let
| ;D - n':‘ (15.22,44)
and ;
gt = C 1D'“’ RYRL 1192 c 11)2 ;a)'g (25.12.45)
Let
itf - D:al (15.12,46)

10 ] 1D 1& (15012.’#7)
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. rrom Eqe (15,12,47) 0 Bqe (19.12045)

() = oY 0,,0)"-’ | | - (13.12,48)

From Ega, (150120“‘) and (150120,‘7)

L '.zDu : . o (15.12,49)
If ve lot
FURILI ‘ | o (15.12,50)

we have as the computational sequence

' A
D, = D (15.12,51)
v 40
o= c,u . (15.12,52)
@ = — (15.12.53)
/1“ 10
PO LA ' (15.12,54)

We may continue Eqs. (15.12,51) through (15.12.54) until a, stabilizes, at

which point

a0~ a8, S (25.12.55)

That this solution is independent of scale can be readily seen by writing
the general form fram Eq. (15.12.45) as

o) P oy}
a = €D 1(2 D CD 1) (15.12.56)

et sttt o e i
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“Then consider any scaling dtagonal 4 such that

Awoa o S (13,12,57)
and
A =7 o: 1 (v DZ c nz 1)'5 L ' (15.12.59)

Subatituting Eqe. (15.12,57) and (15.12,568) in Eq, (15.12.59)
as = aca(snyn) v Dy &’ (aD a) &t oy 114 (15.12.60)

Eq. (15.12,60) reduces at onca to Eq. (15.12.56).

Once a , is obtained, we cun solve for a residual matrix,

s 3

= C-a,al) . (15.12.61)

and operate on 10 as before to obtain a 2* The procedure is reudny gene

eralized to any number of factors,
15.12,5 Proof of the Communality Factor Matrix Method

Let C be the covariance matrix and consider the approximate solution

Ca=-n &l L lc . (15012-62)

where the width of a 1a chosen,
He let

D¢ » D, of (15.12.063)

and

Da = & ' ' (15.12.6h)
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Constder also
DRDa . a (a' a) o (15.12._65)

We assume g of ‘tlxod vidth and start with, say, a principal axis or some

other approximation to a. We call this solution ot Ve let

D » D.i ’ (15.12.66)‘
0 To® o? : :
and
o " Pt ; (15.12.67) -
We thon-consider the matrix reduction solution
a! = ' ' L ,
LR C 0o (oa oP € oP oa) o oPC (15.12.68)‘
We let
U = Da a (15.12069)
0 0" o

From Eqss (15.12.64), (15.12.68), and (15.12.69)

00 = R U Ry )T R (15.12.70)
He let
N =R (15.12.71)
ot ot * MU | (15.12,72)
R ot-'" o (15.12.73)'
or in general
b - p¥ (15.12.74)

Atis




wg
R o S (15.12.75)
, vluk’k- ov’ Y '(15-15-75)
it' Ry ‘- U o | (’15.12’&7)
gqa. (15.12,74) through (15.15.78) conunuo‘un'tui;n
e (g0t -ktr (¢) = bP , | C -(15.12.7'9)‘ |

P is sufficliontly small, As I increases, 1t will approuch a diagonal matrix
of the baste structure of DR D or, in general,

g~ - - (15.12.80)

We can show by Section 15.,12,7 that this procedure i1s independent of scale,
15.12,6 Proof of the Communality Progressive Factor Matrix Mathod
Let Eqs. {15.12.74) through (15.12.78) be the iterative procedure for a

of vidth k vhere k > 1. We continue until Eq. (15.12.79) is satisfied and
let

) = (u.l eos u.k) (15.12.81)

We then let

Huer) - (°(k) » o) (15.12.82)

where o 18 determined in some suitable manner. In particular, we may consider

e ettt Atk o Al o5l e A
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PECELELRR R )
~ and let

" ' 2
o* " xn®? (17 o V)

(15.12.83)

(15.12.8&)

vhere obviously the operations in Eq, (15,12.84) can be performed directly

| vith G and oy, ) 80 that . ,,C nesd ot be conputed,
We then lst |
2 4 |
D” = D
0 o%k+1) 0%{i+1)

2
oY " oP 0%(k+1)

"
ln - oa + ow Ot

and in general,
2 =)

D" = D ?
L 13(k+1) 1%(k1)

2
Vo= gD %)

Lw - C LU

(15.12.@5)k
(15.12.86)
(15.12.87)
(15.12.88)

(15.12,8)

(15.12.90)
(15.12.91)
(15.12.92)
(15.12,93)

(150 1209“)

ot e i e e it A A S A
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| Ve éontinﬁa until
»  Snem—— » . 1.120
ll = T0) P | , - (13.122.95)

{8 nufficiently omall,

Hove oino the solution is independent of scale as shown in aactionv |
15.12,7. | - |
15027 ‘Prbor of the Generalized Procedure Independent of Scale

Given the n x n covariance matrix C and the n x k fngior matrix a.

Consider
E = C-aa ; - (15.12,96)
Lot | |
D = gD +£D, .y , (15.12.97)

vhere g and £ are scalars. Consider the basic structure rank reduction

solution
a » CcD'a(a DPcD? a)‘5 h : (15.12.98)
vhere h ls a square orthonormal. Let A be diagonal and
Y = ACA (15.12.99)
A = Aa _ A | | (15.12.100)

8 - g D, + £ Dy : (15.12,101)
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and considor the basia struature rank redustion solution

A e y8ta(aoty et e © (15.12,200)

Prom Eqss (15,12.96), (15:12,99), and {15.12.100) {n (15,12.101)

8 = 22D (15,22,103)
From Eqa, (15.12.99), (15.12,100), and {15.12,103) in (15.12,102)

s = cta(aotcrta)dn ' (15.12,104)
vhich is the same us vK. (15.12.98),

Now we let ‘

a = a’* A (15.12,105)
From Eqa, (15.12,100) and (15.12,103) in (15.12.105)

a = 0Fa - (15.12.106)
which shows that a is 1n§ependent of A and dopends only on g and f in Eq.
(15.12,97). If we let g = O, £ = 1, ve gat the communality scaling type
solutions, If we let g=1, £ =0, ve gat the conventional basic structure
solution opplied to the correlation matrix.

* We may now substitute C - D for C, and 7 - 8 for 7, and show that a is

independent of A and depends only on g and £, Then for g = 1 and £ = -1 we

get the specificity scaling type of solutions.




CHAPTUR 16
 IMAGE ANALYSES |

In nrltqi obnptqn ve have re:aerod to the communality problem and bm)a
indicated that from o computational point of view we may be cuﬁépm§d with
solving for unknown diagonal elements of the correlation or covariance matrix
in such a way that the modified matrix is of lower ranik than the original,
"Pruumnblyy the 'or!.gtnal-m-xtrix vill be basic in moast cases,

Whotho: ve m select qugond olomonio 80 that the matrix without slterw
ations in the offalagonal olavents is of lover rank than the original is a |
qhoation of fact. We know that in scmo cases this cannot be done except for
a rank mdﬁctton of L, It in well known that experimental covniiance matrie
cen can in general bs reduced to a rank one less than their order by a change
in one dicgonal elemont, |

There are, of courss, as many diugonal elements ns the order of the
matrix, so that thsre would be n ways that the matrix could be reduced in
rank by at least 1, Actually, in the case of the correlation matrix, we
know that this diagonal element which for any particular variable will re-
duce the rﬁnk of tha matrix by 1, is the squared multiple correlation of tmt
variable with all of the others,

The problem of communality and how to solve for the unknown elements
has been very trmﬁlenomo over the years, Many investigators are becoming
convinced that the questions have not been properly stated and that the prob-
lem has not been properly formuated.

Ve huve. geen {n the previous chapter that another way of looking gt the
problem is from the scaling point of view, It should be remembered that the

'cdnmunallty problem has 1ts origin and basic motivation from a consideration

M 5 SRR,
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of hypothases about the kinds of faators which may exist in a set of variables,
These #u fagtors vhich are common to two or more of the vartables, and faatorn

which are specific to sach of the variables, This does vnot, hovever, suggast

bpccifiéully & mathematical formulation, becauss the unique vartcxiao muat',cén- v

sist of both gyuﬁmauc epecific variance, and error or unsystematic specifia
variance, ' ' |
.\notber hpproach to the solution of the inlun involved in the comun-
ality contro'vorny has in rocent years received conudorabh» wphnau undor’ .
the impetus of Louis Guttian (1953). His work has orﬁred scme hope of
getting out of some of the dilermas and contradictions involved in the tradi-
 tional formulations of the communality problsm. This approach is bnoed’ on

vhat he temms imagc analysis. The notion herwv is that a factor analysis should
bs concgrn&d primarily with that part of each variable vhich can be estimated
from all of the othor variables in the set, and that as much as possidle of
the ospecific variance should bo eliminated.

~ We shall therefore consider in this chapter a group of methods based
on Quttman's image enalysia which are somewhat different from those considered
in the previous chapter. The methods of Chapter 15 operate upon a iranurarmed
scors matrix in which the transformation consistas of multiplication by a acdl-
ing Jdingonal. In the examples here, we also work with the transformed score

matrix, in that the matrix is multiplied on the right by another matrix. The

matrix in this case, hovever, is not a diagonal matrix but a more general type -

of matrix which we shall develop in detail in the following sections,
16.1 Charncteristics of the }ethoda

Wea ohall consgider now the characteristics which are common to all of
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these methods, First, all of tha methiods ave based on the image matrix, vhich

15 the matrix consisting of the part of oach variable wh!.cﬁ can be predioted

by ull the umo.lnln@; ones, ODegond, the cu;culauon ‘of the thcuc of the cor-.

rolation matrix {6 required in all of the solutions, The probim'or iqaltna
of the variables {s a conslderation, but the methods differ essentislly in
the arbitrary scaling procedures adopted, Third, the correlation matrix should
Ve basia, rinally, the uolut!onav#re,‘ 1n general, basic structure solutions,
16.1.1 The Communality Bcore Mo.frlx. The basis for all of these in‘cthodn
13 a matrix derived frem tho data matrix by conventional least lquari procod= |
uress In o!'recﬁ, one gots the best least squary estimate of each avttribntt
vector In the data matiix from all of the remaining n-l1 vectors, In this wny
one gets a matrix of least square estimates of the data matrix vectors, ‘Actu-
ally, one doss not go through tho tedious and dstailed operations of culcuiut-
-ing the regreasion equutions and the estimated vuctovu.‘ By algebralc shorte
cuts one arrives at a matrix which transforms the original ’dn.ta materix into
this so-cnalled image or estimated data matrix. Also, in practice, ons does
not operate directly on the data matrix, but rather on a correlation or co-
variance matrix derived from it.
16.1,2 Calculation of the Inverse., The methods considered in this
chapter differ essentially from ali of those we have considered previously
in that the calculation of the inverse of the correlation matrix is required
as a basls for the solution. For this reason the computations can be con-
alderably more ihvolved than previous methods we have considered, The compu-
tatioh of the inverse of a very large matrix involving sevegal hundred or

~ more variadbles is in itself an appreciuble computational enterprises It is

TR s s e e e Al el
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therefore only since the advent of the high speed olactronic ccmputers tliaﬁ

_mothodo of t'aotor analysis buud upon the imgc umlyuu npproaah of Quttman

. huvo bouemo tona!.blo. _ .
16,143 Boaling Considerations, The ossential dLfferences in the
mothoda we shall consider ave thou involving m_ung 61' the variables arte'xy'}

the origiml. data matrix has bLeen gonverted to an image or estinated imtrix; '

These s3aling methods are, however, considsrably simpler than those in the
provious chapter where, as we recall, elaborate 1tcmthn procbdur“ wvere rao-
qulrod to hrr!.v' at o acaling matrix for each of the models presented. In
this set or mothcdn, one adopts a aimplc and perhaps arbitrory rationale for
the acnnng of the voriables, and, proceeding from this scaling on the co- |
variance matrix of the estimatad variables, one does not attempt to alter it
by nucécuai.ve opproximations as in the previous chapter. It is possible with
these models to solve for scaling aconstants as in Chaptor 15, However, the
frultfulnesa of such approaches has not yet been demonstrated,

16,1.4 The Basic Correlation Matrix, In the methods discussed in this

chapter we must have a buiic correlation matrix. This, of course, follews
Trom the fact that we work with the inverse of the correlation or covariance
matrix as part of the general procedure. In the paét it has been true that
most of the correlation matrices on which factor analyses were performed were
basic and did have a regular inverse, Thérefore this reatriction in the
method has not been a practical or serious one, Howsver, we may very well
encounter correlation matrices which are not basic. The most obvious case

1s the ohe in which we have more attributes than entities or persons., An ex-

ample ls the personality inventory for which we wish to conslder each item on
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the invontq:"y a8 a varisble, Wo may have many hundreds of Ltoms in the ine
ventory, and it may be adnintotered to only e hundred persons, Aatually, in
the exporimental situatton, one is faced vith the problem that the longer the
lnvontory to Le nd.mtnhﬁond for research purponu, the more aifficult it is
. to amaos ‘cane or entities vhich have responded to the invantory. Therefors,
~in prdct!.cal situations thore is a tendency to find on inverse relationship |

betveon the number of variables and tho' number of entities, This is a con-

‘sequence of the limited 'tim which potential nubaactl. have available ior take

ing the inventory,
“In any 6:-«, the correlation or covariance matrix cannot have rank

greater than the number of entitieas, The probdlem of how the concept of the

goeneral inverse of the matrix could be used in cohnoction with the image analy-

sis type of fanctor analytic models has not yet baen explored, Whether or not
this would be o fruitful approach, even if it were mthmucauy and con~
putationally feasible, requires further investigatlon,

16.,1.5 Dasic Structurs Solutions, It is quite possible to apply any
of the factor analytic procedures we have discussed in previous chapters to
the types of transformed covariance or correlation matrices which we work
with in the imagse analysis models. Even the ceutrold, the group centroid,
and the multiple group methoda can be applied. However, after going to all
the trouble of calculating the inverse of the matrix, and considering the und-
vantagea of the basic structure aolutior{, one would in general adopt oocne
basie structure type of solution, particularly when high apeed ccinputers
are available. The methods based on the image analysis approach would not be
feasible for airable asets of datun matrices if only desk ccmputera»waro avail-

able, As a matter of fact, it 13 only for small demonstrations or fictitious

e rawem v g e
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 examples that one would be ikaly to use dosk computers for the types of
modols outlined belov, | |
16.2 Kinds of Hethods |

As indicated above, all of the methods start Vith o covariane matrix
vhich conaiats of the variances and covariances 6!‘ the least square oltimtid
variables, He aooune that the data matrix has been reduced to standard or
normalized form, This has Leen done before the iymbolic transformation to '

the estimated or image vuéinhlob has boin accomplished,

On the basis of this uaqumptién, we then have four d;froront variations
of the factoring procedure. First, the estimated covaiinnéo matrix may be |
factored, Decond, the correlution matrix of the estimated variables ﬁay be
 factored, Third, the covariance mutrixvor estimated variables may be scaled
in such a way that it is independent of the scaling of tho original variables,
Plnally) the inverse of the covoriance matrix mey be scaled so th}t it ylelds
the btest least oquare approximation to the identity matrix,

16,2,1 The Estimated Covariance Matrix, As indicated above, the matrix
‘of farinncca and covariances of the variablee estimated by least square re=
gression {rem the duta matrix of norm#lized varinbles can be obtained by suite
able mathematical transformation of the correlation’matrix. After this trans-
formation has been applied to the correlation matrix, the resulting covariance
matrix is subjected to a Lasic structure type solution such as an eigenvalue-
efgenvector solution in which the largest roots and corresponding vectors are
extracted without further alteration of this covariance matrix.

16,2.2 The Estimated Correlation Matrix. Instead of working with the

covariance matrix of estimated variables, one may wish to work vith the actual




correlation matrix of these estimated vuriables, This is a simple matter, tbz_'
one can:‘mcroly pro= and postmultipiy the estimated ooéuidnéo matrix by the |
reciprocul squars root of its diagonal, or vhat amounts to the same thing,
by the reciprocal square root of the vdrianc§¢ of the estlnated mtgbiu. '
- This co:rolntion matrix with unity in the dlagonal is now radtorod’;n‘tho ooné A
ventional manner by basic structure or oigenvalue proQodurol. - |
| 16.2.5 The Independent 8cale Procedure. It wiil be roaogn;zed’that
bdth‘or the farlatlbnl considered ﬁbova are nrbit:ary rrcm‘tha scaling point |
of f!ev; One moy, howaver, prcfeﬁ o model whlch does not depend on»thc.nn-
sunption of either a standardized data or an 1mag§ matrix, but a method which
is 1ndopondont of the scaling of the original or image varianbles, In other
words, one ma} Qtaﬁ to use o procedure so that, for any ascaling diagonal one
may use on the dota matrix, this diagonal cﬁncelu out in the covariance maﬁrlx
which is finally adopted for factoring, The third method achieves this objec-
tive, |

16.2,% The Optimal Residual Matrix, In the image analysis approach,
each vector of the image matrix is defined as the pgrt of onéh variable which
can be predicted from all of the others, Implicit also is the éoncapt of thg
anti-image matrix which consists of that part of each variable which cannot
Le predicted from any of the others. We may therefore also define an anti-
image covariance matrix as indlcated in Seetion 16.7.  This method proceeds
on the assunption that the imnge covariance matrix should be scaled in such
a way that when the anti-image covariance matrix is scaled in the same woy,
it will bekns close to an identlity matrix as possible. In othor words, the
rationale is that the anti-imnge covariance matrix shall have a aenling'such

that, canpared £o the variances, the covariances will Le ag small as poasille
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in the least square senas,
16,3 The Inage Covariance Matrix
16,31 Characteristics of the Method, In this method, as indtonted

above, the amlyau u perrormed dircctly on the covariance matrix of the

variablss wvhich have boen estimated from the normalized data matrix by the
least square model, It can be seen from the mathomatical proof of this method
in Joction 16,7 that the dlagonal or variances of this covurtancclmtrlx cone=

atst of the squared multiple correlations 6f each variable with all of the
| others, ‘ , . |

In general, any method of factor analysis based on basic structure pro=

goduras or approximations to them tend to give th§ grentiut veight to the |
variobles vith the largest variances. That 13, if a covariance rather than
& correlation matrix is operated upon, other things being equal, the variables
with the laorgest variances have the greatest woight or influonce in determine-
ing the factor loadings for that matrix., It can be seen, therefore, that |
since the variances are squared multiple correlation coefficients, those varli-
aLles which have th§ highest multiple correlation with all of the other vari-
ables receive the greatest weight in the determination of the basic structure

factor matrix. Conversely, variables with very low multiple correlations re-

celve very little weight in the solution. In particular, if a variable is en-
‘tiroly independent of the others--that 1s, if it has zero correlations=-it ree
ceives no weight Qhatever, and wvill therefore not have a loading in any of the
factora,

The rationale here can obviously be defended if ane takes the position

that he i3 interested only tn the factor loadings for those factors which ure

conmon to two or more of the variables, This is the traditional Thursteniun
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npproach to tha problem. The co:ununallty aonocpt appearl to mako more sense
rz'om the mathematical and thoorottau). po!.uf. or view via the 1map unalyuu |
»u.pprocoh than via the moro traditional approunh in which one alters the i«
ngona), uomontu without altoring the correlution coatriclonta. It would gseem
that any do!’onutbh approach should be based on sane trannfomation of tho datu
matrix, vathor than on the Jdata matrix plus uomothins which is not oconnected
in any vay with the data matrix, This latter is mpnm in the conventioml
| comnumnt.y approach,
| 16,3.2 Computational Squations
16.3.2a Dafinition of Notation
R 1o the correlation matrix,
R® 18 the invorse of R,
EE ia the diagonal of [- 13
i 10 the estimated covariance matrix,

a 18 the factor loading matrix.

16.3.2b The Equations

p = R.‘ : (.160301)
D = D:' — (16.3.2)
Cp = f o« DD - (16.303) ’

‘fp » Dcp D (16.3.11)
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cn ’l R = D ‘, | - A ' (160505)
Gy = Q84 L (16:3.7)
s » qbt | o | O (16.3.8)

16,3,3 Computational Inatructions., We assune that the matrix of cor=

» &hﬁqnu of the variables to be factored is available, This matrix wve in-
dicate byr R. .The first step is to cuuuiau its inverse by one of the con-‘
ventional procedurca. EqQ. (16 3.1) indicatas the inverse of the correlntion
matrix, Wc deoignato this by p.

Eq. (26,3.2) is the dlngonal matrix whose olements are the reciprocals
of the diagonal elements in the matrix given by Eq. (16.3.1).

We next indicate the inverss or thc correlation matrix with the diagonal
olements removed or made 0, as in B, (16.3. 3),

»The next step is the pro- and postmultiplication bo!' the matrix given by
Eq. (16.3.3), by the diagonal mutvix of Eq. (16,3.2). This is indicated by
Eqe (16.3.!4).

The next step consists of subtracting from the original correlation
matrix the dingonal matrix of Eq. (16.3.2). This is indicated in Eq. (16.3.5).
It can be shown that the dingeonnl elements in the mutrix on the left hand side
of 21 (16.3.5) nre now the squared multiple correlation coefficients of each
variable wvith the remaining voriables,

We next add together the matrices given by Eqas. (16.3.h) and (16.3.5),
as indicated in Eq. (1G.3.G)s This i3 now the covariance matrix of the esti-

mated variablas, or the image covariance matrix,
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Eqe (1543,7) 1ndioatc( the baste structure solution of this inage oo

~ variance matrix,

The analysis may be carried to as many factors as deeired, There umiu

to be no very good rule for this particular model, but a rough rule-of-thumd

eritorion is that the sum of the currently caloulated basic diagonals be ape

proxinately 80 to 85 percent of the trace of the imuge covariance matrix
-glven by Eq. (160506)0

.

£q. (16.53.8) gives the factor loading matrix as a funotion of the basic
dlagonnyli and the basic orthonormal vetors indicated in EQs (16.347)e

16,344 Numerical Example., The correlation ﬁatrix used hore is the
Qumo as in provious chapters,

Table 16,3.1 gives the image covariance matrix of the correlation matrix,
The inverse of t.hg correlation matrix is not displayed, although it can be
printed out from the appropriate Fortran program if desired, The procaduré
for calculating the inverse is given in Chapter 3, Soction 3.5. This i3 in-
cludad as "Jubroutine Symin" in the Fortran listing.

The first row of Table 16.3.2 gives all the basic diagonal elements of
the image covariance matrix. The body of the table gives the column vectors
of the left Lasic orthonormal, These are, of course, proportional to the eor=
responding factor loading vectors of the image covariance matrix, The bastc
orthonormal matrix must be postmultiplied by the square root of the basic di-
agonal matrix to yleld the principal axis vectors. These have not been calcu-

lated, The busic structure factors are probably of more intereat than the

_prineipal axis vectors, although the latter could readily be obtained by

saveral additional statements in the Fortran program.

[ -




: e ' 007551
0.6880
0,6621
0012015
-0,0052
0.1011 .
0.2936
0,3%018
043356

- Tablck 160}.2

3.0037

=0,4108
«0. 4221
=0,1:310

0.6886
007'0'5“
0.6659

0,472

0.0672
0,1167
0,3163
0.3067

0.3517

« Basic

1.3337

0.6621 0,1204
0.6659 0,1472
046909 0.2146
042146 0,514
0,2693 0.,4675
0,2389 0.h9k2
0,2877 o0,2182
0,307 0,1784

1

043554 - 0,2853

29

" Table 16,3,1 « Image Covariance Matrix

10,0692

0.0672
0,109}
0,4675
0,5720
Q. '858
0,1611
0.00L4
0. 2464

0,1011

10,1167

0,239
0,4942

10,4858

0,562k
0,1602
0.1417
0,2625

0,2936
04316)
0,2017
0,2182

0,1611

0.1602
0,4608
043964
0.4177

0,3018
0.3067
3o
3
0.1417
0.396“
0.4989

10,3883

03356
043577
00555,0
0,2053
0,246h
0,2625
0dk177
0.36885
0,4359

Diagonai and Basie Orthbnormul of Image Covariance Matrix

0,5792 0,125 0,0651 0,0508 0,037L 0.,021% 0,0029

0.3458 -0,2489 0.,0805 -0,4535 0,0380 0.,6019 0.2h27 =0,1204
03318 <0,2246 0.1425 0,4832 -0,4261 =0,3195 0,1327 -0,5261
042016 =0,3089 =0,2148 =0,0538 0,3573 =0.207h =0,4966 0.4149
. ~0,2587 =0.4596 =0,0780 =0.0329 0,1784 =0.5532 0,3880 =0.1702 O.kh442
=0,2172 =0.5232 =0,1902 0,4100 =0,5056 «0,0719 =0,3804 =0,0709 +0,2522
«0,2472 =0.4862 =0,1926 «0.h374 0,326F 0,4173 0,1472 0,193
«0,3027 =0.0133 0.5306 0.4669 0.2479 042779 0.2532 =0,4101 =0,1940
«0,2924 0,0468 0,5653 =0.5696 =0.3283 «0,2947 «0,1488 «0,0951 =0,2063
«0.3391 =0,0765 0,3343 0.1533 0.0352 0.1999 ~0.2234% 0.,654% 0,4739

«0,3752
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16,4 The Image Corselation Matrix

16,b.1 Charactaristios of the Msthod, The method 1s similar to most :
of the conventional methods of factor snalysis ve have comi.ddiod in previous
chaptors in that we begin with the matrix of the correlations of measures
vith unity'iu the dlagonal, lere wo make an arbitrary asswmption that, for
the partlouhé Mph, each of the eatimatod vnrinbin lhould have equal
~variance, The rationale or Justificstion fbr this ubumpttou is pm&b;j

no vorse or better than such an sssumption for the original data matrix. I_r, .

howover, one assumes that variables which correlate low with others should
not, tharefoi'c, be weighted less in the factor uomtion, the procedure or‘
‘using unit variances for the imnge varisbles is justified. In any case,
this method does give relativoly more weight to the variablea which have the
m'éater unique variance than doss the previous method,

16.4.2 Computational Equations

16,420 Definition of Notation

c" W is the estimated covariance matrix.
D 1o the dlagonal of B’
Rw W is the estimated correlation matrix.

[
Q8 Q' is the basic structure of R‘, W

16.442b  The Equations

Given the cw ‘w matrix

a = (1.t | | (16.4.2)

T R et s b 8 O g T G A




191

o - —x T S | ’n-
Row = €0y 8 - , (16.442)
- ,n‘_, 17 B Q8 Q.l w ¢ ) ' . (16.'4.!)
aeaqdt | (16,4.4)

16.&.5{ Computational Ibltructloﬁa; The ccumputational instructions for
éhlo procedufd involve only a fov more steps than those of the previous wethbd. ‘
Ve begin Ln:tﬁo same way byignlculutlng the covurlnnci matrix of the image
vuriablon; that is, the C,y matrix. We have seen that the dimgonal olements

" of this covariance matrix are given by the identity less a diogonal matrix
vhich is the invorso of the diagonul elements of the inverse of the correla-
tion matrix. This is indicated in Iq. (16.4,1). It is precisely a d&igonal
matrix of the squared multiple correlation coefficients of each variabdble with
all the remaining variables, '

The next set of ccmputational steps is given in By. (16.4.2). This con=

sists of pre- and postmultiplying the covariance image matrix by the inverse

of tho 4 matrix calculated in Eq. (16.4,1). The resulting matrix is the cor-
relation matrix of the image variables,

The next set of computations consista in finding the basic structure

|
! ;:
factor vectors for the required number of factors, as indicated in Eq. g §
(16.4.3). %
» The factor loading matrix is indicated in the conventional manner in Eq,
(16.4.4).

1644 Munerical Example. We use the same correlation matrix as in the ’

previous section. Here we begin with the image covariance m&trix solved for

in the previous section, i
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Tablo‘lé;h.l glves the correlation matrix obtained rrow the image ch

variance matrix. Thln i» obtalnod by pre- and poatuultlplying the lwagp 00e

vnr!uncc mntrtx by tho reciprocal square rnot of 1to diagonal,

The irlt rov of Tabla 16.4,2 gives the olomontl of the basic dtlgnnul
of the imagt carrelatinn matrix. The body or‘tho table gives the left basta
orthpnoémal Af this matrix. It may be transformed tm a factor loading matrix
~ by the usual method indicated in Eq., (16.4.4), |
16,5 The Indapendent Joale Mntriﬁ
’ 16,5,1 Characteristics of the Method, Thi prnVioua two methoads which
ve considersd were dased on arbitrary scaling procedures., In tha Lirst case
ve rqquircd that the original variables be in standard scrre form, and in the
second case we requlred that the image variables be in standard scors form.
It may be desirsble to have a method which dees not impose any such arbite
‘rary saaling, ' |

We thersfere consider a methed which scales the image cnvariahce matrix
in such a way as to cancel out any particular scaling which has been applied
to the original or image variables, ‘

This method also has some interesting characteristics thch are 1hd£cuted
in Section 16.7.3. The particular scaling applied to the data matrix is such
that the image covariance matrix is the sum of the covariance matrix of the
scaled data matrix and the inverse of this covariance matrix, less twice
the identity matrix.

16.5.2 Cemputational Equations

16.5.,2a Definition of Notation
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Table 16,h,1 = Image Correlation Matrix

1,0000 0,93%% 0,5300 0,1666 0,1008 0,157% OMShG 0,4990 0.5936
0493 11,0000 0,928 0,2387 0,1029 0,1003 0,5287 0,5033 0.6279
0,9306 0,9280 1,0000 0,3612 0,2695 0,383% 0,1952 0,5192 0.E479
0,166 0,2387 0,3612 1,0000 0,9015 0,9214 0,4400 0,3532 0.6042
0,1008 0,1029 0,2695 0,5015 1,0000 0.,8566 0,3072 0,1524 0,493k
0,157h 0,1803 0.383h 0,921k 0.8566 1.0000 0,308L 0,267h  0,530L
0.hoh6  0,520T 0.h992 0,400 0.3072 0,308L 1.0000 0,8095  0.9125
0.4990 0,5033 0,5192 0.3552 0.152% 0,2674 0,009 1,0000 0,033
10,5936 0.6279 0.,6479 0.,6042 0,493k 0.530L 0.9125 0,8330 1,0000

‘Table 16,4,2 - Dasic Diagonal and Basic Orthonormal Matrix of Image Correla-
: o tion Matrix '

51550 2.2350 1.0679 0.2302 0,109 0,0803 0.0569 0.,0397 0,0052

=0,3392 -0.3428 =0,3008 -0,1185 0,2553 -0.b410 0,5042 -0,0200 =0,3807
=0,3668 «0,2347 =0.3792 0,1657 0.0189 0,336L 0,0650 0.5459 0,4728
=0.309k  Q.M512 =0,0757 0,0589 0.0797 =0.(697 -0,2413 -0,0LL7 O.h223
=0,2525 0,5038 =0,159% <0,3Gh3 =0.6019 0,1279 0.22k% 0,1799 =0.2512
=0,261h 0,4G48 -0.1780 0.3935 0.4708 0,3568 -0,1045 -0,1302 -0,3760
=0.3535 =0.0798 0.4927 -0.4978 0.3183 0.,0554 -0.3357 0,3636 =0,1699
“0,3312 -0,1450 0,508L 0,6234 -0,3792 =0,1391 0,0655 0.1355 =0.19k
=0.h10h =0,0036 0.2999 -0.,1G4k 0,0ML) 0.,2760 0,360 -0,5830 0,4030
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o] W s the estimated covariance matrix,

G 18 the estimated covarlance matrix indapendent of scale,
Q8 Q' is the basic structure of .

16.5.2b The Equations
alvoh the cw W matrix

d = DR'l (16.5.1)
G = 4,4 (16,5.2)
¢ = Qb ¢Q (16.5.3)
a = qad (16.5.4)

16.5.3 . Computatinnal Inatructioni. This nethed, like the previsus one,
begins with the covariance matrix of the image Vartublel. It may »r may not
be based on an image covariance matrix derived from standard measures. The
result 1§ thé sane whether it is applied to a matrix derived frrm standard

“measures or to a matrix derived from arbitrarily scaled measures, Frr con-

venience we shall assume that the image cavariance matrix is based on stand-

ardized measures,
We begin with a diagonal matrix, as indicated in Eq. (16.5.1). This is

a diagonal matrix made up of the square roots of the diagonal elements in the
fnverse of the correlation matrix. '
We now pre- and postmultiply the ceavariance matrix of the image vari-

ables by this diagonal matrix, as indicated in Eq. (16.5.2). This ve call

- e i <

e
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the @ matrix, This matrix now has the intevesting péoporty that it is the
sun of o matrix and 18 nverse less twice the identity matrix.
Eqe (16,5.3) indioates the tasic struoture resslution of the g matrix,
*Eq.v(lé;s.u) glves the prlnolbal axis factor loading veators fer the

specified nunber ef factors,

16,5.4 Numerical Example, We uce the carrelation matrix as in the pre-

vious sections and begin with the image covariance matrix as caloulated in
those examples, '
The first rov in Table 16.5.1 gives the basic dlagonal slements of the
coalo-froo image covariance matrix. The body of the table gives the left
baslc orthonormal of this matrix. Porhaps the moot striking feature of this
table, as dampared with correcponding tables for the twe preceding methods,
is the large first eigenvalue of 8.9569.
16,6 The Optimal Residual or Anti-Image Matrix
16.6.1 Characteristics of the Method. This umethod io scmewhat differ-
ent in rationale frem the previous methcds, It begins, as they do, with a
covariance matrix of the imags variables, but the ratienale for the lcailng
procedure is less arbitrary than in the first two, although perhapﬁ ina
sense more arbitrary than for the third method. |
Here the essential conoideration i3 one developed independently by
Guttman (1956) and Harris (1962). They were concerned with a scaling ratione
ale for vhich the scaled antl-image covariance matrix yields the beat least
square approximatinn to an identity matrix, The method 18 of particular
interest because of the recent work of Harris (1962) in which he has been
concerned with the estimation of diagenal elements in the correlation matrix
which will yield the bLest approximation to a lower rank approximation, This

i3 the conventimnal cAmmunality problem.
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Toble 16,5,1 « Dasia Diagonal "nnd‘Bu‘ai'c Orthonormal of Scale-Free
' - Imoge Matiix . :

89569 3.2956 1,2363 0,2787 0,206 0.1196 0,101 0,046 0,0066

o =0.5Mhh 0,2675 -0,1628 -0,0754 0.6286 0,1830 -0,4206 0,1335 -0.0905
- =0:5353 0,2518 «0,1301 «0,2229 «0.6625 0,2269 0,1128 0,1484 -0,2h1h
. =0.4803 0,0791 «0,237G 00,3257 0,0569 =0,4390 0.3673 -0,3991 0.3322
0,1609 =0,4786 -0,0668 -0.0277 =0.170h 0,4936 <0,3349 -0,3726 0,4650
*0,1329 =0,5571 =0,2088 -0.4379 0,302% 0,0869 0.523L 0,0373 -0,2501
- *0,1608 =0,5268 «0,1959 0,4610 ~0,1566 =0,3049 -0,3482 0,2665 -0,3692
=0,2160 «0,1096 0,5587 -0,h0ks ~0,040L =0,4185 -0,2722 =0,406L =0.2233
=0,2166 «0,0592 0,610L 0.5023 0,1264 0,4083 0,3018 =0,0429 -0.2224
<0,2348 -0,162% 0,360L -0.1329 -0,010% ~0,190k 0,0567 0.6503 0,5556
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16.6,2 ,dcmpﬁtuttnnal Equations
16.6,2a nmns.unn of Notation

O u 18 the estimated covariance matrix, : ' T

(

L ) isa matrtx vhose elements are the lqynroa of the olamanta

in B

L 18 the covariance matrix with optimal residual variance crapone ' 3
ents, | ‘

16.6,2b The Equations

P -‘ e o | | (16.6.1)
P . o2 (16.6.2)
a1 » pt Dyl (16.6.3)
D = &f 5, (16.6.4)
7 = DG, D | | | (iS.G.s)
7 = Q8 g  (16.6.6)
a = qot | (16.6.7)

16,643 Crumputationsl Instructisns, The cemputations begin with the
inage covariauce matrix culculated as in the previoua methods. However,'we
must 80 back now to a solution of the scaling dlagonal. We begin with the

tnverse of the correlatien matrix, as indicated {n Eq. (16.6.1),
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Noxt ve Aquare each of the elementa of the inverue unluulatad in Eqy

(16 6s1), an indicated in Eq. (16 612), The uupnvucript cnololcd Ln parene

- thases means that each alomont of the mntrix on the right hnnd ltdn of the

oquatlon hus boen aquared, ;

* Next wo caloulate a veotor, as indicated in Eq. (16.6,3). The right
hand side of this equation ohowl that thi veotor oéﬁainbn of th§ diagonal
olenents of the inverse of tbi correlation matrix given byqu. (16.6. l); We
then prcmultlply this vector by the inverse of the matrix calculatod in Eq,
(16,6.2) |

We now define a nev diagonal matrix, us in Eq., (16.6.4), This matrix

1s obtained by taking the diagonal elements of the inverse of the correlation
nufrix and multiplying these by the |§unro roots of the elements calculatod
in Eq, (16,6.3), It should be observed that the solution given by Eq., (16.6.3)

does not indicate offhand that all elements in the d matrix must be positive,

If they are not positive, of course, we cannot have real numbers for their
square roots, This is a limitation of the method. Rusearch to date seems
to indicate that with most experirental data matrices, Eq. (16.6.3) will give
all positive elements,

We next pre- and postmultiply the image covariance matrix by the diagone
al matrix of Eq. (16.6.4) to get a 7 matrix, as in Eq. (16.6.5). Tﬁis is the
matrix which we now factor,

The basic structure of this matrix is indicated in Eq. (16.6.6).

The factor loading matrix is given in Eq. (16.6.7). This is simply the
uaual principal axis factord .ulculated for the desired number of factors.

16.6,4 Nunerical Example, We use the correlation matrix as in the pre-

vious section,

e e e, o
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Tabls 16,6,1 giva; the inverse of the éorrolgtion matrix,

Tho body 6: Table 16.6.2 1o the inverse of the matrix obtained by square
ing the olenants of Table 16.6,1, The row at the bottam of the table aontains
the el.emontu of tho scaling diagonal, k - ' ; |

The body of Table 16,6,3 gives thc image covarianco matr!.x lcalad so t,ha.t
the corresponding anti-image matrix is the best least square approximation to
the 1dont.l.ty mnt'rix. ‘ - . '

The nrat row of Table 16.6.4 consists of the elcmentu of the bu!.o di=-
agonal of the matrix in Table 16,6.3, The bady of the tnble is the correse-
ponding left basic orthonormal,

16,7 Mathematical Proofs

16.7.1 The Estimated Covariance Matrix

, Givﬁn the data matrix x in otandard imeasures, We conaider another matrix,
W, such that each vo#ﬁor ‘.‘:.\l of W is the J.east squure estimate of L.l cy.].cu-

lated fram the rewaining n-l vectors of x. Wo let

R - XX (16.7.1)

N

We let § be the matrix of regression coofficlents for estimating each variable

from the remaining n-l variables so that

W ~r:. X B (16‘7'2) l

It i3 well known that g is given by
B o= IR Da (18.7.3)

if the variables are standard measures and DR-l is the diagonal of R_‘1 « We

et s s g o
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Table 16,6,1 = Invorse of Correlation Matrix or p _
- 3,7h63 240659 -1,2801 10,0050 0,022 +0,050% =0,03Lh #0,0542 =0,1026

«2,0057  3,91160 ~1.3784 0,2502 0,956 =0,07hk «0,050( «0,3145 «0,0787

1,202 -1,5784  3,2313 ~0.379% -0,2692 N,0068 «0,0519 0,2176 =0,169k
10,0950 0,252 =0,379% 2,065 <0,7099 «0,6166 «0,1215 «0,0187 -0,3038
10,2022 0,0563 =0,2692 =0,7099 2.3365 =1,1916 0,1040 -0,0h47 -0,0316

0,050 =0,07hk ~0,0068 =0,6156 -1,1016 2,2853 «0,1310 0,17¢h =0.1155

0,031k «0,0506 =0,0519 =0,1215 0,1040 =0,1310 1,9201 =0,9902 0,371

«0,0542 «0,3145 0,2176 =0,0187 =0,0U87 00,1764 =0,9902 1.,9958 «0,5%07

«0,1026 ~0.0787 =0,169% =0,3038 «0,0316 «0,1155 =0s3731 =0,5397 1,7726

Tnbh,16.6.2 - Invérne of P Matrix, and Secaling D!.usonnla for Optimal -
‘ " Error or Antie-Dmage Matrix : v

0,0786 =0,0209 «0,0086 0,0005 =0,001L 0,0002 «0,0002 0,0006 =0,0002
«0.0209 0.072% «0,0099 «0,0008 0,0005 =0,0001 0,000 =0,0018 0,0002
=0,00€6 =0,0099 0.,0990 =0,0051 =0,0010 0,0005 0,0002 =0,0009 =0,0007

0,0006 =0,0008 =0,0031 0,2h25 -0,0191 =0,0124 =0,0008 0,0009 =0,007) -

=0,0011 0.0005 =0,0010 =0,019L 0.1987 «0,0526 ~0.,000% 0,0004 0,0007
0.,0002 =0.0001L 0,0005 =0,012k «0,0526 0,2067 =0,0003 =0,0015 =0,0003
«0,0002 0.000" 0,0002 "0.0008 “0.000" ‘000003 0.2&8& '000706 =0,0002
0,0006 =0,0018 =0,0009 0,0009 0,000h =0,0015 =0,0706 0,270 =0.0219
=0,0002 0,0002 =0,0007 =0.C0(L 0,0007 =0,0003 =0,0062 =0,0219 0,3208

1.6103 1.6127 1.5790 1.2936 1.2007 1.2964 11,2215 1.1905 1.2497

- PR




Table 16}6.5 .

1.5008
'107867
1,603k
0,208
0.1346
0.2110
045776
0.5785
0.0752

Uy

Matrix

1.7&6g 16834 0,2508
1,9358 1.6957 O.?O??
1.6957 1.Z216 0.11384
0,3072 00,4384 0,8558
o.xe o.? 2k 0.8077
0.2439 0, 0091 008287
046230 10,5548 0,347
0,5809 0,5728 0,2748

0,1346
0,1387
0.3424
0,8077
0,9382
0,8066
042520
0,1241
023043

Image Covariance liatrix floaled for Optimal

0,2110
0.2h39
0,4891
0,8207
0.£066
0,9452
0,2538

Q. 210’6 ’

00'0252

0.9776

0.6230
0.53 8
03447
0,2520
0.2538
07174
0,576k
0,6376

0.57689
0, 5689
045728
0. 27’08
0.1241
0,2166
0,570h
0,7071
0.,5779

Antisluage

0.6752

0, 7208 )
0,701

0,h611
0,3943
0,452
0.6%/6
0,5779
0.6

Table 16,6.4 - Dasio Diagonal and Orthonormal for Scalod Iimage Covariance

GohiThs

=0.1973 =0,2664
«0,5075 =042653
"O-l‘957 ‘ool

«0 .IBO!G
=0,1408
=0.1720
=0,2281
«0.2161
-0 ] 26h5

Matrix

22,4373 0.9357 b.205'j 0.1438 0,0915 0,0730 0,0380 0,0052

0,1653 0.1004 0,0053 «0,2447 0.,h102 0,1503 =0,097h
0,1303 0,2162 «0,6671 «0,2004 =0,1616 0.1532 =0,2051
0,4946 0,0833 0,0303 =0,1885 «0,53571 0,2678 =0.3289 0.h594

0.5336 0.2008 0.h37h 043220 =0,0198 =0.5343 0,042 =0,2659
0.1037 «0.%631 0,3897 -0.0515 0.35
0.049% =0.576T =0.5284 0.,143) «0+3830 «0.3355 =0,0583 ~0.2346
0.1655 -0.3822 0.1272 =0,0054 0,2073 -0,0633 0,6497 0.5210

9:31%8 B:7538 92213
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- therefore h@ve

I Vo
The mﬁtrix:of reaiduals E is then, from Eq. (ié.??!o) o

E = x-W o R (16.7.5)
From Eqs. (16.7.10) and (16,7.5) we have

B ow xR D | | o (16.7 .6)_

We shall nhow conaider the covariance matrices involving x, W, and E, Ve let

Cew e | | | (26.7.7)
¢ p = | (16.7.8)
Gy = Lt | | (16.7.9)
Cog " “";TE - = (16.7.10)
e = Gt . O (6a2)

These are the formulas developed Ly Guttx;mn (1953) and discussed by Harris
(19¢2).
From Eqse (16.7.1), (16.7.4), and (16.7.7)

c

4 ‘ .
«y = B-Dg | (16.7.12)

From Eq9| (160701), (160705), and (16.708)

-1
C,p = Py (16.7.13)
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" yrm Eqse. (160701" (1607.2*)' Bnd» (160709)

Gy = @-Dua)R(r-woh) (16.7.14)
or
Gy = R-2 n'[:-x + D;-x ? D;-z ‘ ‘ A (16.7.15)

From Eqs. (16.7.1), (16070!‘), (160706), and (1607010)

cw B - D;-L - D;'l R.l D;'l ‘ ' : ' (1607016)

From Eqse (16.7.1), (16.7.6), and (16.7.11)

Cpp ;-; R D;-x | _ ‘(16.7.17‘)

The relationships among the various covariance matrices are obvious and have
becn dl‘scuased by Guttzan (1953) and Harris (1962). .

‘One may now regard the covariance matrix of the "eat_imgt_t_cd" m&abha
as the logicaL matrix to factor, since presumably it has removed kl?ceu each
viw!.able that part vhich does not overlap with the other variables, e there-

fore let the basic structure of Eq. {16.7.15) be

and factor to the desired numbér of roots and vectors,

16.7.2 The Estimated Correlation Matrix

Suppose we do not wlish to factor the covariance matrix of the estimated
variables, but rather the actual correlation matrix of this estimated matrix.

We have from Section 16.T.)
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. - bod o . !
Oy ™ n =203+ DN ‘.’uf‘ | (16.7.19)
We lot

d.D ’ ‘ 16..20
| Sy | - (16.7.00)

| The matrix we wish to factor is

Ryy = .a’fi cy', i a'5 | (16,7.21)
From Egs, (16.7.19) and (1G.7.20)
d = I D?‘-x , ‘ : | (26,7.22)

It i3 well known that Eq, (16.7.22) 15 o diagonal of the squared multiple core
relations between each variable and the remhining n-1 variables of the set,
Wo repeat the covariance matrix of the aafimatod variablas with the observed

variables,

C,y = R- o;-x (16.7.23)

It is clear from Eqs, (1€.7.22) and (16.7.23) that the diagonals of Cyw

and cx W nru‘the some.,
16.7.3 The 3olution Independent of Scale
Consider again the covariance matrix o1 the estimated variables 5,‘

namely,

4 44 A .
Cyy ™ R=2Dg+ DR Dpa ~ (16,7.24)

It may be dealrable to consider a factoring of, aay,

e ettt v e 4t 4 A it o
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G = DO, D - = 4 (16.7.25)

where @ 13 indspendent of the scaling of the variables, That is, ‘wa remove

tho asaumption of standardized measureo in _-:_c_; Suppose ve let '

L, , . ;
C = ’-‘-P-‘-"- o C (16,7.26)

vhors now we place no restrictions on the scaling of x. We then rowéito'Eq.
(1607021‘) us

Cyy = C =200+ 0y ¢* by (16.7.27)

Wo lot

C = dRQ (16.7.28)
vhers 4 is an arbitrary sculing diagonal.
Suppose ve let D in Bq. (16,7.25) be
D = ng-x (16.7.29)
From Eqoe (16.7+24), (16.7.25) and (16,7.29) we have
G = Dg-x R Dg- -21+ nl;ﬁ At n;} ' (16.7.50)

Suppose now we write £q, (16.7.24) in the form 61‘ Eqe (2647.30)

0 =« Dg'l c Dg'l «w2I+ D.c.'-}‘ C.l D;ﬂ o (l‘st'(l}l’

From Bqse (1647.28) and (1047.31) ve see that the d matiix cancels out, and

Eqs (16.7.31) bacames procisely Eqs (16,7.30)s Therefore @ in Eq. (1G.7:31)
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ia tndapendent or scale and would aeem to bo a douimblc mtr!x rov tactor!ng.

Jurthammoce, nuppoao we J.ot

& - Dg-l R D}x o | - {26,7.32)
Then Eq, (1647.31) can be written

| ] . §+ g -}-'2 I f (16.7553)

We alao know thut the buoic orthonormals of g, g » and § are the some and

that, Lf the buaic structure of g is

g = Q8¢ , s : R (16.7.5!;)

then
& o= qtty - (16,7.35)

and
0 = 6(8+8%.21) 0y o (15.7.36)

It should also be noted that 5? 15 the vell known matrix of n-2 order partial

correlation coefficionta.
16.7.4  The Optimal Ecror Covariance Matrix

Considor again the estimated covariance matrix
Guy = R=2mu+ ma R o B (16.7.37)

and the estimated error covariance matrix

Cop = Dpd K D , (126.7.38)

EER R
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: ‘We may wish to consider a woaliug of 0,y 4n Eq.{lﬁ.’ld'l), and hence the

sane soallng of Oy , tn Hqs (16e7430), vhich WILL reault in tha bast loast

square approxlmation to the ldan_f'lty mateix, Weo muy then oqualvlyﬂ vell oone

lido;' the sculing of Ll." vilah 13 the beat hdit lqﬁaw ostinate of the 1d6n’-»

tity mateix, lat
a n*kd I = ¢
and doternine 4 so that
te ¢/C¢ w pin » ¢
© Frem Bqos (16,7.39) aud (16.7.40)
v;trmﬁﬂﬁfa-aaﬂa+n
Lot
R - p
and from Equ. (16.7.41) and (16.7.42)
v w te(dpdipd-2dapd+I)
tet
v o= a1
From Eq. (16.7.44)

tr (Apd) = V! Dy v

(26.7.39)

(16 .T."‘O)

(16.7.01)

(16.7.42)
4
(16.7.43)

(16.7.Mk)

(16.7.45)

SN AL
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' ht g( 2) be a matrix of the aquand elementa of p, '.l‘hon it oan bo shovn
that ‘

tr (d p a? p’d)‘ w Yy 4 9(2’ av .(16;7.h6)

m mc;u. (16.7.&3); (16.7.44), (16.7.&5), indb(16.7.h6)
vy = Vg p(a) U «2v DyV+n ‘(16.7.&7)
Differentiating q, (16.7.47) synbolically with mpabt to ¥/
§-¥7 = 4(apfl®ay. D, V) | . (16.7.h8)
_Equating £q. (16.7.48) to zero
dp@)va D, v (16.7.49)
or from Igs. (16,7,44) and (16.7,49)
o2 2y . D)1 (16.7.50)
| Fran Eq. (10.7.50)
a1 e (ol J (16.7.51)

To scale C,, Sy y in Bq. (16.7.37), therefore, #o that tha scaled Cp S i part is

the best least square approximation to an identity matrix, we write rirat

) ] m -] =) [ ‘ - —1 ) 0".:
Dy Gy y Dt Dyt R Dt = 2 Dod + R (16 1452)

—
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Then latting 7 be the scaled Gy

matrix, and using d given by Eqq (26,7.51), :
we have ' | ’ '

7 = a(Dan Dpt ~ 2Dy + 17) 4 . | | |  (16_-7-5))

£
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